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This paper is the fourth in a series devoted to identifying and explaining the properties of strongly
correlating liquids, i.e., liquids where virial and potential energy correlate better than 90% in their
thermal equilibrium fluctuations in the NVT ensemble. For such liquids we here introduce the
concept of “isomorphic” curves in the phase diagram. A number of thermodynamic, static, and
dynamic isomorph invariants are identified. These include the excess entropy, the isochoric specific
heat, reduced-unit static and dynamic correlation functions, as well as reduced-unit transport
coefficients. The dynamic invariants apply for both Newtonian and Brownian dynamics. It is shown
that after a jump between isomorphic state points the system is instantaneously in thermal
equilibrium; consequences of this for generic aging experiments are discussed. Selected isomorph
predictions are validated by computer simulations of the Kob–Andersen binary Lennard-Jones
mixture, which is a strongly correlating liquid. The final section of the paper relates the isomorph
concept to phenomenological melting rules, Rosenfeld’s excess entropy scaling, Young and
Andersen’s approximate scaling principle, and the two-order parameter maps of Debenedetti and
co-workers. This section also shows how the existence of isomorphs implies an “isomorph filter” for
theories for the non-Arrhenius temperature dependence of viscous liquids’ relaxation time, and it
explains isochronal superposition for strongly correlating viscous liquids. © 2009 American
Institute of Physics. �doi:10.1063/1.3265957�

I. INTRODUCTION

How much does knowledge of a system’s thermal equi-
librium fluctuations at one state point tell us about its behav-
ior at other state points? In principle, complete knowledge of
the fluctuations provides enough information to determine
the density of states, from which the free energy at other
state points may be calculated. In practice, only second-order
moments of the fluctuations may be determined reliably.
These generally give little knowledge of the system’s prop-
erties away from the state point in question. It was recently
shown that a large class of liquids exhibits strong correla-
tions between their virial and potential energy NVT thermal
equilibrium fluctuations.1–6 Such liquids have a hidden �ap-
proximate� scale invariance.5,7 Because of this, important
global information about the system may be obtained from
knowledge of the virial and potential energy fluctuations’
second-order moments at a single state point. This unusual
situation in statistical mechanics is the background of the
present paper, which is the fourth in a series3–5 devoted to
identifying and explaining the properties of strongly corre-
lating liquids.

Paper I �Ref. 3� of the series presented results from com-
puter simulations of 13 different liquids. The results show

that van der Waals and metallic liquids are strongly correlat-
ing, whereas hydrogen-bonding liquids such as methanol and
water are not. Likewise, covalent and ionic liquids are not
expected to be strongly correlating because competing inter-
actions generally spoil the correlations. Paper II �Ref. 4�
gave a thorough analysis of the cause of the strong correla-
tions, which is briefly recapitulated below. It was shown how
to qualify the simple explanation of the correlations given in
our first publication �Ref. 1�, where strong correlations were
argued to derive from particle-particle close encounters prob-
ing only the repulsive part of the potential, which is in many
cases well approximated by an inverse power law �IPL�. This
explanation must be qualified in order to explain the occur-
rence of strong correlations at low and moderate tempera-
tures and/or low pressures, as well as in the crystalline state.
A number of consequences of strong virial/potential energy
correlations were also discussed in Paper II. Paper III �Ref.
5� published in tandem with this paper, gives further theoret-
ical results on the statistical mechanics and thermodynamics
of the hidden scale invariance that characterizes strongly cor-
relating liquids. Paper III also presents results from computer
simulations demonstrating that strong virial/potential energy
correlations are present even in nonequilibrium situations.

The present paper introduces the new concept of “iso-
morphs” in the phase diagram of a strongly correlating liquid
and derives a number of isomorph characteristics. The exis-
tence of isomorphs distils the properties of strongly correlat-
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ing liquids into one single concept and its immediate conse-
quences, a concept that is defined without reference to
correlations.

In order to recapitulate the definition of a strongly cor-
relating liquid, recall8 that for a system of N particles in
volume V at temperature T, the pressure p is a sum of the
ideal gas term NkBT /V and a term reflecting the interactions,
W /V, where W is the so-called virial, i.e.,

pV = NkBT + W . �1�

This equation is usually thought of as describing thermody-
namic averages, but it also applies for the instantaneous val-
ues. The instantaneous ideal-gas pressure term is a function
of the particle momenta, giving the NkBT term. The instan-
taneous virial W is the function of particle positions defined8

by W�r1 , . . . ,rN��−�1 /3��iri ·�ri
U�r1 , . . . ,rN�, where

U�r1 , . . . ,rN� is the potential energy function. If �U is the
instantaneous potential energy minus its thermodynamic av-
erage and �W the same for the virial, at any given state point
the WU correlation coefficient R is defined by �sharp brack-
ets here and henceforth denote equilibrium NVT ensemble
averages�

R =
��W�U�

	���W�2����U�2�
. �2�

By the Cauchy–Schwarz inequality the correlation coeffi-
cient obeys −1�R�1. We define strongly correlating liq-
uids by the condition R�0.9 �Paper I�. The correlation co-
efficient is state-point dependent, but for all liquids we have
studied by computer simulation3 R is either above 0.9 in a
large part of the phase diagram, or not at all. In all cases the
correlation coefficient quickly decreases when pressure be-
comes negative, but strongly correlating liquids generally re-
main so at zero pressure.

Strongly correlating liquids include1–4,6,9 the standard
Lennard-Jones �LJ� liquid, the Kob–Andersen binary LJ
mixture as well as other binary LJ-type mixtures, a “dumb-
bell” liquid consisting of two different LJ spheres with fixed
bond length, a system with exponential repulsion, a seven-
site united-atom toluene model, the Lewis–Wahnström
orthoterphenyl model, and an attractive square-well binary
mixture. Strongly correlating liquids have simpler physics
than liquids in general. This has particular significance for
the highly viscous phase.10–21 Thus to a good approximation
strongly correlating viscous liquids have all eight fundamen-
tal frequency-dependent thermoviscoelastic response
functions22–24 given in terms of just one,2 i.e., they are
single-order-parameter liquids in the sense of having dy-
namic Prigogine–Defay ratio22 close to unity.2,4,23 Moreover,
strongly correlating viscous liquids obey density scaling, i.e.,
their average relaxation time � varies with density �=N /V
and temperature according to �=F��� /T�.7,25–29 Even com-
plex systems like biomembranes may exhibit significant cor-
relations for their slow thermodynamic degrees of freedom;
this was shown by all-atom computer simulations of five
phospholipid membranes which exhibit strong correlations
of the energy-volume fluctuations in the NpT ensemble.30

When instantaneous values of virial and potential energy
are plotted against each other for a strongly correlating liquid

in thermal equilibrium at constant volume, an elongated el-
lipse appears.1,3,4,6 The slope of this ellipse is
	���W�2� / ���U�2�. As detailed in Sec. II D this quantity,
which is weakly state-point dependent, is to a good approxi-
mation the exponent � of the density-scaling relation �
=F��� /T�.7,9 Thus for a strongly correlating liquid knowl-
edge of the equilibrium fluctuations at one state point pro-
vides information about how the relaxation time varies with
density and temperature.

What causes the strong WU correlations of some liq-
uids? A hint comes from the well-known fact that an IPL pair
potential31–42 v�r��r−n, where r is the distance between two
particles, implies 100% correlation �Paper II�. In this case the
slope is n /3.115 In simulations of the standard LJ liquid we
found slopes around 6, corresponding to n
18.1 Although
this may seem puzzling given the expression defining the LJ
potential vLJ�r�=4���r /	�−12− �r /	�−6�, if one wishes to fit
the repulsive part of the this potential by an IPL, an exponent
around 18 is indeed required.1,4,43 The reason is that the at-
tractive r−6 term makes the repulsion considerably steeper
than the bare repulsive r−12 term would imply.

Paper II gave a thorough discussion of the WU correla-
tions with a focus on the standard single-component LJ liq-
uid; this included also a treatment of the �classical� LJ crystal
where one finds 0.99
R
1 at low temperature. According
to Paper II the r-dependent effective exponent n which con-
trols the correlation is not simply that coming from fitting the
repulsive part of the potential, but rather n�2��r��−2
−rv��r� /v��r�. This number is 18–19 around the LJ mini-
mum. In fact, the LJ potential may here be fitted very well
with an “extended IPL” potential �Papers II and III�, i.e.,
vLJ�r�
Ar−n+B+Cr with n of order 18. For this potential
n�2��r�=n. At constant volume the linear term contributes
little to the virial and potential energy fluctuations: when one
nearest-neighbor interatomic distance increases, another de-
creases in such a way that their sum remains almost constant
�Paper II�. This means that virtually correct canonical prob-
abilities are arrived at by using the IPL approximation, an
observation which inspired us to the definition of isomorphs
given below.

For an IPL liquid several quantities are invariant along
the curves in the phase diagram given by �n/3 /T=const. Pa-
per III �Ref. 5� summarizes the thermodynamic IPL invari-
ants, which include for instance Helmholtz free energy over
temperature, excess entropy, average potential energy over
temperature, isothermal bulk modulus over density times
temperature, and virial over temperature. In reduced units the
dynamics of an IPL liquid is also invariant along the
�n/3 /T=const curves �Paper III�. The present paper shows
that some IPL invariants give rise to general “isomorph in-
variants” of strongly correlating liquids. Not all IPL invari-
ants generalize, however, and, e.g., the equation of state of a
strongly correlating liquid is usually poorly represented by
the IPL approximation �Paper II�.

We demonstrate below several implications of one single
assumption: the existence of curves in the phase diagram on
which for any two state points there is a one-to-one corre-
spondence between their respective microscopic configura-
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tions, such that corresponding configurations have identical
configurational NVT canonical probabilities. These curves in
the phase diagrams are referred to as isomorphs. Section II
defines isomorphs and summarizes their properties classified
into thermodynamic, structural, equilibrium dynamic, and
aging properties. Most isomorph properties come in the form
of isomorph invariants. In Sec. II we also discuss how to
identify isomorphic curves in the phase diagram. Section III
presents results from computer simulations of �mainly� the
Kob–Andersen binary LJ mixture, validating some of the
isomorph predictions. Section IV relates the isomorph con-
cept to selected topics of current liquid state theory and ex-
periment. Section V gives a brief conclusion.

II. ISOMORPHS

This section introduces the concept of isomorphs in the
phase diagram of a strongly correlating liquid. Although the
definition of an isomorph refers neither to IPL potentials nor
to strong WU correlations, only strongly correlating liquids
have isomorphs. This is because the existence of isomorphs
reflects the hidden scale invariance characterizing strongly
correlating liquids �Paper III�.

A. Isomorph definition

Assuming that the origin of the coordinate system is cen-
tered in the liquid, for any microscopic configuration
�r1 , . . . ,rN� of a thermodynamic state point with density �,
the “reduced” �dimensionless� coordinates are defined by

r̃i � �1/3ri. �3�

Using reduced coordinates corresponds to switching to a
scaled coordinate system where the density is unity. We term
a microscopic configuration physically relevant with respect
to a given thermodynamic state point if the configuration’s
contribution to the partition function at that state point is not
a priori negligible. For instance, no configurations where all
particles occupy the left half of the system’s volume are
physically relevant for ordinary liquid states.

State points �1� and �2� with temperatures T1 and T2 and
densities �1 and �2 are isomorphic if they obey the following:
whenever two of their physically relevant microscopic con-
figurations �r1

�1� , . . . ,rN
�1�� and �r1

�2� , . . . ,rN
�2�� have identical re-

duced coordinates �i.e., r̃i
�1�= r̃i

�2��, they have proportional
configurational NVT Boltzmann factors:

e−U�r1
�1�,. . .,rN

�1��/kBT1 = C12e
−U�r1

�2�,. . .,rN
�2��/kBT2. �4�

It is understood that the constant C12 depends only on the
state points �1� and �2�, not on the microscopic configura-
tions. Isomorphic curves in the phase diagram are defined as
curves on which any two state points are isomorphic.

An IPL liquid with interactions scaling with distance
�r−n trivially obeys Eq. �4� with C12=1 for states with
�1

n/3 /T1=�2
n/3 /T2. No other systems obey Eq. �4� rigorously,

but we show in Sec. III from simulations of a strongly cor-
relating liquid that the existence of isomorphs is a good ap-
proximation. Although only IPL liquids have exact isomor-

phs, we shall generally say that a liquid “has isomorphs” if
isomorphic curves exist to a good approximation in the liq-
uid’s phase diagram.

The isomorph definition does not refer to WU correla-
tions, but only strongly correlating liquids have isomorphs.
Appendix A proves in detail that all strongly correlating liq-
uids have isomorphs and vice versa. It is illuminating here to
briefly sketch why the existence of isomorphs for a liquid
implies that it must be strongly correlating. Consider a liquid
with two isomorphic state points that are infinitesimally
close to each other. If � represents the variation between two
infinitesimally close microscopic configurations with same
reduced coordinates of the two state points, the logarithm of
Eq. �4� implies ��U /T�=const where the constant is infini-
tesimal. The differentiation leads to a relation of the form
�U= �da�U+db where da and db are infinitesimals. Since
�U is the potential energy difference between two micro-
scopic configurations differing by �ri�ri, one has �U�W
with an infinitesimal proportionality constant �Appendix A�.
Altogether we get W=AU+B for some constants A and B.
This implies 100% correlation of the WU fluctuations—
recall, however, that the existence of isomorphs is itself an
approximation. Thus liquids having isomorphs �to a good
approximation� must be strongly correlating.

A number of properties characterize isomorphic curves
in the phase diagram of a strongly correlating liquid. Most
isomorph properties come in the form of isomorph invari-
ants. These are consequences of the fact that for any two
isomorphic state points there is a one-to-one correspondence
between the state points’ physically relevant microscopic
configurations, such that corresponding configurations have
the same NVT canonical probabilities. This one-to-one cor-
respondence motivates the name isomorph �“same form”�,
which is fundamental throughout mathematics. Here two ob-
jects are termed isomorphic if they are structurally equiva-
lent, i.e., if a structure-preserving bijective mapping between
them exists. In physics and chemistry isomorphic crystals by
definition have symmetry groups that are mathematically
isomorphic—such crystals have the same structure, but dif-
ferent constituents.

B. Isomorph properties

We briefly recall well-known facts of the statistical me-
chanics of classical liquids in the NVT canonical
ensemble.8,44–47 The Helmholtz free energy F is the sum of
an ideal gas term and an “excess” free energy term reflecting
the molecular interactions, F=Fid+Fex. The first term is the
free energy of an ideal gas at the same density and tempera-
ture, Fid=NkBT ln���3 /e�, where �=h /	2mkBT is the
thermal de Broglie wavelength. The excess free energy is
given by

e−Fex/kBT =� dr1

V
¯

drN

V
e−U�r1,. . .,rN�/kBT. �5�

The integral involves only the configurational degrees of
freedom. This separation of the configurational degrees of
freedom from the momenta should be kept in mind through-
out this paper. Thus when we refer to the canonical ensemble
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and canonical probabilities, only the configurational part of
phase space is implied. Likewise, the microcanonical en-
semble refers to the uniform probability distribution on the
constant potential energy surface in configuration space.

The configuration space probability distribution normal-
ized to the above dimensionless integral is given by

P�r1, . . . ,rN� = e−�U�r1,. . .,rN�−Fex�/kBT. �6�

The excess entropy Sex is defined by Sex=−�Fex /�T. Since
the entropy in the canonical ensemble is generally given by
−kB�ln P�, we have

Sex = − kB� dr1

V
¯

drN

V
P�r1, . . . ,rN�ln P�r1, . . . ,rN� .

�7�

The inequality −P ln P�1− P implies that Sex is always
negative, a fact that is physically obvious since any liquid is
more ordered than an ideal gas at the same volume and tem-
perature.

Most isomorph invariants are consequences of two fun-
damental isomorph properties, Eqs. �8� and �9� below. Equa-
tion �4� implies that the normalized reduced-coordinate ca-
nonical probability distribution is invariant along an
isomorph

P̃�r̃1, . . . , r̃N� is an isomorph invariant. �8�

The notation P̃ is introduced to distinguish from the P of Eq.

�6�; P̃ is normalized via �P̃�r̃1 , . . . , r̃N�dr̃1¯dr̃N=1 which

implies P̃�r̃1 , . . . , r̃N�=N−NP�r1 , . . . ,rN�. The second funda-
mental isomorph property is that an isomorph I is character-
ized by two functions f I�r̃1 , . . . , r̃N� and g�Q�, where Q de-
notes the state point, such that for any physically relevant
microscopic configuration of state point Q,

U�r1, . . . ,rN;�� = kBTfI�r̃1, . . . , r̃N� + g�Q� . �9�

This follows from the isomorph definition equation �4�. In
this formulation the potential energy function is formally re-
garded as density dependent, reflecting the fact that Eq. �9�
only applies for physically relevant microscopic configura-
tions, i.e., configurations that fill out the volume.

Before deriving the isomorph properties we note two
multidimensional geometric isomorph characterizations. Re-
call that the potential energy landscape is the graph of the
potential energy function, i.e., a subset of R3N+1. The first
geometric property is that isomorphic state points have po-
tential energy landscapes which, when restricted to the
physically relevant states, are identical except for a vertical
displacement and scaling by the inverse temperature, and a
horizontal scaling to unit density. This follows from the iso-
morph definition equation �4�, and this is what Eq. �9� ex-
presses. The second geometric isomorph characterization re-
lates to the hypersurface � in R3N where the potential energy
equals the average potential energy of the state point in ques-
tion: in reduced coordinates this “constant potential energy

hypersurface,” denoted by �̃, is invariant along an isomorph.
This follows from the first geometric property in conjunction
with the isomorph definition equation �4�. For details, please

consult Appendix A, which proves that a liquid is strongly
correlating if and only if it has isomorphs, and that this hap-
pens if and only if the liquid has curves in the phase diagram

along which �̃ is invariant.

1. Thermodynamics

A number of thermodynamic quantities are invariant
along isomorphic curves in the phase diagram of a strongly
correlating liquid.

• 1a. The excess entropy Sex is invariant along an
isomorph. Equation �7� implies that

Sex=−kB�P̃ ln P̃dr̃1¯dr̃N+const, from which property

1a follows because of the invariance of P̃. Property 1a
may also be derived by referring to the microcanonical
ensemble where the excess entropy is kB times the loga-

rithm of the area of �̃ plus a constant: because �̃ is an
isomorph invariant, so is the excess entropy.

• 1b. The configurational entropy Sconf is invariant along
an isomorph. The term “configurational entropy,” not to
be confused with Sex, is used here in the sense of Adam
and Gibbs and subsequent workers, who related Sconf to
the temperature dependence of viscous liquids’ average
relaxation time.14,16,48 The configurational entropy is kB

times the logarithm of the “density of states” of poten-
tial energy minima, the so-called inherent states, evalu-
ated at the state point’s average inherent state
energy.18,20 Property 1b follows from the identity of the
scaled potential energy landscapes of two isomorphic
state points.

• 1c. When a liquid is heated along an isomorph, the mea-
sured specific heat equals the ideal-gas specific heat.
Since the specific heat is dS /d ln T and property 1a im-
plies dSex=0 along an isomorph, the measured specific
heat equals the specific heat that would be measured for
an ideal gas subjected to the same process.

• 1d. The isochoric specific heat is invariant along an
isomorph. If the liquid’s extensive excess isochoric spe-
cific heat is denoted by CV

ex, in terms of the variable X
=U /kBT Einstein’s expression CV

ex= ���U�2� /kBT2 be-
comes CV

ex=kB���X�2�. Equation �9� implies that for two
isomorphic state points pairs of microscopic configura-
tions with same reduced coordinates obey X1=X2

+const, i.e., for the fluctuations �X1=�X2. Since �X
depends only on the reduced coordinates and

P̃�r̃1 , . . . , r̃N� is isomorph invariant, it follows that the
excess isochoric specific heat is an isomorph invariant.
This implies invariance of the full CV because the con-
tribution to CV from the momentum degrees of freedom
is state-point independent.

2. Structure

Particle distribution functions are generally invariant
along an isomorph when quoted in reduced coordinates.
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• 2a. Reduced-coordinate radial distribution function�s�,
as well as higher-order equilibrium particle probability
distributions, are invariant along an isomorph. Property
2a follows from Eq. �8�; note that it applies for liquids
with any number of different particles.

• 2b. The multiparticle entropies S2 ,S3 , . . . are invariant
along an isomorph. The equilibrium particle distribu-
tions give rise to n-particle entropies49,50 contributing to
the total entropy as follows: Sex=S2+S3+¯. In terms
of the radial distribution function for a system of iden-
tical particles g�r�, the pair-correlation contribution S2

is given by S2 /N=−��kB /2��dr�g�r�ln g�r�+1−g�r��.
When this expression, as well as the more involved ex-
pressions defining S3, etc., is rewritten in terms of re-
duced coordinates, it becomes clear that property 2b is a
consequence of Eq. �8�. We considered here only the
case of identical particles, but property 2b holds for
systems with any number of different particles.

3. Equilibrium dynamics

Like the static isomorph invariants, dynamic invariants
also derive from the fact that for all physically relevant mi-
croscopic configurations the potential energy landscapes of
isomorphic state points are identical—except for additive
constants and overall scalings that do not affect the reduced-
unit dynamics. For reference, Table I summarizes the defini-
tion of the basic units and gives examples of some reduced
quantities.

• 3a. Both NVE and NVT Newtonian dynamics are iso-
morph invariant when described in reduced units. Con-
sider first standard energy-conserving Newtonian dy-
namics, the NVE ensemble. If the mass of particle i is
mi, Newton’s second law is mir̈i=Fi, where Fi=−�ri

U
is the force on the ith particle. We rewrite this in terms
of reduced units as follows. If the average particle mass

is m, the reduced mass of the ith particle is defined by
m̃i=mi /m. The reduced potential energy is defined by

Ũ=U /kBT and the reduced force by F̃i=−�r̃i
Ũ. We also

define a reduced time t̃= t / t0 where t0=�−1/3	m /kBT. In
terms of these reduced variables Newton’s second law

becomes m̃ir̈̃i= F̃i. The isomorph invariance now fol-
lows from Eq. �9�, which implies that the reduced force
is the same function of the reduced particle positions for
all state points on a given isomorph. Proceeding to
Newtonian dynamics in the NVT ensemble realized via
the Nosé–Hoover thermostat,51,52 recall that the forces
here have the additional term −�miṙi with a “friction

constant” � obeying �̇= �K /K0−1� /�0
2, where K is the

kinetic energy, K0 its average, and �0 the thermostat
time constant. These equations become isomorph in-
variant when rewritten in terms of the same reduced
units as the NVE Newtonian equations, if the thermostat
time constant is adjusted to be the same in reduced
units; otherwise, only the long-time NVT dynamics is
isomorph invariant.

• 3b. Brownian dynamics is isomorph invariant when de-
scribed in reduced units. The Brownian �Langevin�
equations of motion are first-order stochastic equations.
These equations obey detailed balance, ensuring consis-
tency with the canonical ensemble. The Brownian equa-
tion of motion is ṙi=�Fi+��t�, where � is the “mobil-
ity” �velocity/force� and ��t� is a Gaussian white-noise
vector term characterized by ��m�t��n�t���
=2�kBT�mn��t− t�� �m ,n=1,2 ,3�. The path-probability
functional is given53 by P�exp�−1 / �4�kBT��i�−�

� �ṙi

−�Fi�2dt�. We rewrite this in terms of reduced variables

with Ũ=U /kBT as above, but the reduced time is now
defined via t̃= t / t0 where t0=�−2/3 /�kBT. This leads to

P�exp�−1 /4�i�−�
� �ṙ̃i− F̃i�2dt̃�. Since the reduced force

is isomorph invariant for microscopic configurations
with same reduced coordinates, it follows that reduced-
time Brownian dynamics is isomorph invariant.

• 3c. Normalized time-autocorrelation functions, as well
as normalized higher-order time correlation functions,
are invariant along an isomorph when quoted in reduced
units. Consider the time-autocorrelation function or
higher-order time-correlation functions of some vari-
able A referring to constant-volume dynamics. Proper-
ties 3a and 3b imply that for both Newtonian and
Brownian dynamics time-autocorrelation functions of A
are invariant as functions of the reduced time if they are
normalized by dividing by �A2�. Normalization of any
higher-order time-correlation function similarly makes
it isomorph invariant as a function of the reduced times
defining the correlation function.

• 3d. Average relaxation times are isomorph invariant
when quoted in reduced units. For any variable A with
zero mean a generic definition of its average relaxation
time is �A=�0

��A�0�A�t��dt / �A2�. In reduced units this

becomes �̃A=�0
��Ã�0�Ã�t̃��dt̃ / �Ã2�. By property 3c this

expression is isomorph invariant.

TABLE I. Reduced units. The energy and length units refer to state-point
properties only, the time unit refers also to the dynamics. Once these fun-
damental units have been defined, transport and other properties have
uniquely defined dimensionless versions, denoted by a tilde. The table gives
three examples of such properties.

Quantity Newtonian dynamics Brownian dynamics

Energy unit �E0� kBT kBT
Length unit �l0� �−1/3 �−1/3

Time unit �t0�
	m/kBT

�1/3

1

�2/3�kBT

Diffusion constant:

D̃=D / �l0
2 / t0� D̃= ��1/3	m /kBT�D D̃ =

1

�kBT
D

Viscosity:

�̃=� / �E0t0 / l0
3� �̃ =

1

�2/3	mkBT
� �̃ =

�

�1/3�

Heat conductivity:

�̃=� / �kB / l0t0� �̃ =
	m/kBT

�2/3kB
�

�̃ =
1

��kB
2T

�
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• 3e. Reduced transport coefficients such as the diffusion
constant, the viscosity, etc. are invariant along an iso-
morph. By the fluctuation-dissipation �FD� theorem the
diffusion constant is given by D=�0

��vx�0�vx�t��dt,
where vx is the x component of a particle’s velocity. The

reduced diffusion constant D̃ is defined by D̃

= ��1/3	m /kBT�D for Newtonian and D̃=D / ��kBT� for
Brownian dynamics �Table I�. In both cases one has

D̃=�0
��ṽx�0�ṽx�t��dt̃, implying that D̃ is an isomorph in-

variant because both dynamics are isomorph invariant.
Similarly, if � is the viscosity, the reduced viscosity is
defined by �̃= ��−2/3 /	mkBT�� for Newtonian and �̃
= ���−1/3�� for Brownian dynamics. When rewritten as
a reduced-time integral over the reduced shear-stress
autocorrelation function, the required result follows.
Similar results apply for the heat conductivity and other
dc transport coefficients.

• 3f. G� /T� is invariant along an isomorph where G� is
the instantaneous shear modulus. If Sxy =�ixiFi,y where
xi is the x-coordinate of the ith particle and Fi,y is the
y-component of the force acting on it, the FD expres-
sion for the instantaneous shear modulus54 is G�

=�kBT+ �Sxy
2 � /VkBT. In terms of reduced variables one

has xiFi,y =−kBTx̃i� Ũ /�ỹi leading to G� /�kBT=1

+ ���ix̃i� Ũ /�ỹi�2� /N. The required isomorph invariance
now follows. Note that, because of the density depen-
dence of the potential energy in Eq. �9�, the analog ex-
pression with the instantaneous bulk modulus replacing
the instantaneous shear modulus is not a general iso-
morph invariant.

4. Aging

Not all isomorph properties come in the form of invari-
ants. This section discusses a different type of consequence
of the existence of isomorphs for strongly correlating liquids.
It is assumed that the externally controlled variables are vol-
ume and temperature.

• 4a. A jump between two isomorphic state points starting
from equilibrium takes the system instantaneously to
equilibrium. This is because the normalized Boltzmann
probability factors for microscopic configurations with
same reduced coordinates are identical for the two sys-
tems. Thus isomorphs are predicted to be a kind of
“wormholes” in the phase diagram along which one can
jump instantaneously from equilibrium to equilibrium,
even when the states are characterized by long relax-
ation times.

• 4b. Jumps from any two isomorphic state points to a
third state point lead to the same aging behavior for all
physical quantities. Note first that a jump between two
arbitrary state points starting from equilibrium, 1→3,
has the same relaxation pattern as the jump 2→3,
where state point �2� is isomorphic with state point �1�
and has the same density as state point �3�. To see this,
suppose that instead of the 1→3 jump we first impose

the isomorphic jump to state point �2� with the correct
final density and then, immediately thereafter, jump to
state point �3�. On the one hand, the system does not
“register” it spent a tiny amount of time at state point
�2�. On the other hand, the 1→2 jump took the system
instantaneously to equilibrium at state point �2� �prop-
erty 4a�. Consequently, the 1→3 and 2→3 jumps must
have the same relaxation toward equilibrium for all
physical quantities. It now follows that if state point �1�
is replaced by an isomorphic state point �1��, the 1
→3 and 1�→3 relaxations are identical.

A concise way of summarizing the aging properties of
strongly correlating liquids is that isomorphic state points are
equivalent during any aging scheme.

C. IPL invariants and general isomorph invariants

As mentioned, an IPL liquid has exact isomorphs. These
are the curves in the phase diagram given by the equation
�n/3 /T=const. All above isomorph properties apply exactly
to IPL liquids �single component or multicomponent, as long
as the exponent is the same for all interactions�. However,
only some of the IPL invariants along the curves given by
�n/3 /T=const give rise to general isomorph invariants. Ex-
amples of IPL invariants that do not generalize are Fex /T,
U /T, W /T, the excess pressure coefficient over density
�V

ex /�= ���W /V� /�T�V /�, and KT /T�, where KT is the iso-
thermal bulk modulus. One way to see that not all IPL ther-
modynamic properties give rise to general isomorph invari-
ants is to refer to the approximate equation for the excess
free energy derived in Paper III. Here it was shown that the
hidden scale invariance of a strongly correlating liquid im-
plies that one may write Fex�V ,T�= f�V�+NkBT���� /T� to a
good approximation. For an IPL liquid f�V�=0, which, how-
ever, does not apply generally. The f�V� term implies that
IPL properties involving volume derivatives do not give rise
to general isomorph invariants.

D. Identifying isomorphs

How to identify the isomorphic curves in a
strongly correlating liquid’s phase diagram? As we just saw,
for an IPL liquid the answer is simple: all static and
dynamic IPL invariants refer to the curves given by
�� /T=const where �=n /3. For an IPL liquid the virial
and potential energy equilibrium fluctuations from their
average values obey �W=��U, and the number
� may be expressed in terms of equilibrium fluctuation av-
erages in three simple ways: �= ��W�U� / ���U�2�
=	���W�2� / ���U�2�= ���W�2� / ��W�U�. This applies only
for a 100% correlating liquid, however. For a general
strongly correlating liquid there are three slightly different
corresponding gammas,
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�1 =
��W�U�
���U�2�

, �2 =	���W�2�
���U�2�

, �3 =
���W�2�
��W�U�

.

�10�

It follows from the definition of the correlation coefficient R
�Eq. �2�� that

�1 = R�2 = R2�3. �11�

Thus �2 is the geometric mean of �1 and �3, and �since R
�0 for a strongly correlating liquid�

�1 � �2 � �3. �12�

Although for any strongly correlating liquid the three gam-
mas are quite similar, the question is which gamma to use to
identify the isomorphs. The answer is that there is no unique
gamma common to all the isomorph invariants. To see this,
note that in complete generality any quantity q of any liquid
defines a state-point dependent exponent �q�Q� with the fol-
lowing property. An infinitesimal change away from state
point Q conserves q whenever the quantity ��q�Q� /T is kept
constant �thus, �q�Q�= �� ln T /� ln ��q�Q��. Strongly corre-
lating liquids are characterized by the particular property that
these �’s are very similar for all the isomorph invariants.

In the simulations reported in Sec. III we used the excess
entropy’s “density scaling exponent” � derived as follows.
Along a configurational adiabatic curve 0=dSex

= ��Sex /�V�TdV+ ��Sex /�T�VdT. The volume-temperature
Maxwell relation for the configurational degrees of freedom
implies ��Sex /�V�T= ���W /V� /�T�V. Thus a configurational
adiabat is characterized by �d ln ����W /�T�V

= �d ln T�T��Sex /�T�V= �d ln T���U /�T�V, i.e.,

� = d ln T

d ln �
�

Sex

=
 �W

�T
�

V

 �U

�T
�

V

=
��W�U�
���U�2�

. �13�

This is �1 of Eq. �10�; the last equality is a standard thermo-
dynamic fluctuation identity derived, e.g., in Appendix B of
Paper I. Since it is convenient to think of the density scaling
exponent as a generic quantity, we will not refer to it as �1,
but simply as �. Note that �= ��W /�U�V, which implies that
� is the slope of the lines of average virial versus average
potential energy at constant density �compare, e.g., Fig. 4 in
Paper I�.

We propose to use the excess entropy’s density scaling
exponent because, on the one hand, it rigorously reproduces
property 1a and, on the other hand, it may be calculated from
equilibrium fluctuations at any given state point. Further-
more, it may be shown that for a given infinitesimal density
change the optimal temperature change leading to a mean-
square best fit of the logarithm of Eq. �4� is obtained by
using this � �Appendix B�. Finally, note that this � is also the
one suggested by taking the ratio of Eqs. �28� and �27� in
Paper III: �=�V

ex /cV
ex where �V

ex= ���W /V� /�T�V is the excess
pressure coefficient and cV

ex is the excess isochoric specific
heat per unit volume.

It is now clear how to step-by-step map out an isomorph
which is realized as a configurational adiabat. At any given

state point one calculates � from the equilibrium fluctuations
using Eq. �13�. For a slight density change Eq. �13� deter-
mines the corresponding temperature change. This identifies
a new state point that is isomorphic with the initial one. At
the new state point a new value of � is calculated from the
equilibrium fluctuations, etc. We used this method in the
simulations reported below, but found, notably, almost as
good agreement with predictions using �2 ��3 was not
tested�.

In the below simulations, as well as in previous simula-
tions, we generally found only rather weak state-point depen-
dence of the density scaling exponent �. As shown in Appen-
dix B, for a strongly correlating liquid any variation in �
with state point can only come via a density dependence: �
=����. This result is derived from the isomorph identity be-
tween the curves in the phase diagram of constant excess
entropy and those of constant isochoric specific heat. Our
simulations are consistent with this result in the sense that �
generally varies significantly less along isochores than oth-
erwise throughout the phase diagram. The conclusion is that
in the isomorph approximation, any isomorph invariant is a
function of ����� /T, i.e., it may be written as a function of a
variable of the form e��� /T. Interestingly, this was precisely
the recipe for collapsing dielectric relaxation measurements
at different pressures and temperatures, which was proposed
by Alba-Simionesco and her co-workers in their pioneering
paper on density scaling.27

III. COMPUTER SIMULATIONS

This section presents results from computer simulations
investigating some of the predicted isomorph properties. The
purpose is to document the existence of isomorphs for a typi-
cal strongly correlating liquid. Results are reported for mo-
lecular dynamics �MD� simulations of the standard
Kob–Andersen55,56 80:20 binary Lennard-Jones �KABLJ�
liquid with N=8000 particles simulated using the GROMACS

package.57,58 The KABLJ system is a strongly correlating
liquid �Paper I� which is easily supercooled without
crystallizing.59 Its density scaling exponent � varies slightly
with state point, but at low and moderate pressure and tem-
perature � stays between 5 and 6 �at extremely high pressure
and temperature � converges to the value of 4, which a
purely repulsive r−12 potential would imply�. The simulations
were performed in the NVT ensemble using the Nosé–
Hoover thermostat with characteristic time of 0.5 in MD
units. Collections of isomorphic state points were identified
as described above.

A. Direct isomorph check

It is possible to check directly the proportionality be-
tween Boltzmann factors which defines an isomorph. This is
done as follows. At one state point of the equilibrium
KABLJ liquid the simulation generates a time sequence of
microscopic configurations. We now ask: For a given density
change, does a temperature exist at which the new density
state point is isomorphic to the initial one? If yes, what is this
temperature? These questions are answered by plotting the
potential energy of each microscopic configuration against
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the potential energy of the same configuration scaled to the
new density. In Fig. 1 density was decreased by 2.4%, which
corresponds to a decrease in the relaxation time by more than
a factor of 4 if temperature is not changed. The two potential
energies are 99.9% correlated. This shows that a temperature
does exist at which the isomorph condition equation �4� is
fulfilled to a very good approximation. When the density
change goes to zero, the correlation goes to 100%, of course,
but the high correlation is nevertheless noteworthy given the
fact that the slope of the stretched oval in the figure is not
very close to unity �the slope is 0.884�. The interpretation of
the slope is that the two state points are isomorphic if the
temperature at the new density is 0.884 times the old tem-
perature. Appendix C details how the correlation coefficient
of Fig. 1 relates to the standard WU correlation coefficient of
Eq. �2�.

One might think that Fig. 1 proves that all the isomorph
invariants apply to a good approximation for the KABLJ
liquid, but this is not necessarily the case. Consider for in-
stance the dynamics. This becomes increasingly barrier
dominated as temperature is lowered,60 and the increasingly
unlikely event of a barrier transition determines the relax-
ation time. Even if almost all microscopic configurations of
significant weight in the canonical ensemble obey the iso-
morph definition equation �4� very well, this does not ensure
that the barriers scale in the same way. Consequently we
need more simulations to validate the isomorph concept.

B. Equilibrium properties: Statics and dynamics

Denoting the large LJ particles as A, Fig. 2�a� gives the
AA radial distribution functions for six isomorphic state
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FIG. 1. Direct check of the isomorph condition equation �4� for the KABLJ
liquid with 8000 particles �energies are given per particle�. The MD algo-
rithm generates a time sequence of equilibrium microscopic configurations
at the state point �1� given by �1=1.258 and T1=0.628 in standard LJ units.
For each configuration the potential energy is plotted on the x-axis, while the
y-axis gives the potential energy of the same microscopic configuration
scaled to density �2=1.228. Clearly these two quantities are highly corre-
lated, which is the requirement for an isomorph. The slope of 0.884 implies
that state point ��2 ,T2� is isomorphic with state point ��1 ,T1� if T2

=0.884T1=0.555. In comparison, the exponent of Eq. �13� evaluated from
the fluctuations at state point �1� is �=5.018, and the temperature at state
point �2� keeping �� /T=const is T2=0.556. The nonzero offset of the best fit
line �of �0.909� reflects the fact that the constant C12 in Eq. �4� differs from
unity.
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FIG. 2. �a� AA particle radial distribution functions for the KABLJ liquid at
six isomorphic state points. �b� The same radial distribution functions plot-
ted as functions of the reduced distance, showing very good data collapse.
The inset focuses on the first peak and includes results for a second collec-
tion of isomorphic state points. �c� AB and BB radial distribution functions
in reduced units for the six isomorphic state points of �a�. There is good data
collapse, but with larger deviations than for the AA distribution function.
This shows that isomorph properties are not exact.
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points of the KABLJ system. The temperature varies by al-
most a factor of 2; nevertheless there is good collapse of the
curves when these are plotted as functions of the reduced
distance �Fig. 2�b��. The inset of �b� zooms in on the peak of
the radial distribution function. We added here data for a
second collection of isomorphic state points, showing that
different isomorphs have different structures. That the iso-
morph invariants are, after all, not exact is evident from Fig.
2�c�, which shows the scaled AB and BB radial distribution
functions of the isomorphic state points of �a�.

Turning to the dynamics, Fig. 3�a� shows the AA self
part of the intermediate scattering functions Fs�q̃ , t̃� at the
reduced wave vector corresponding to the first peak of the
static structure factor, where t̃ is time scaled by the charac-
teristic time t0=�−1/3�m /kBT�1/2 �Table I�. The figure shows
results for four state points at two densities. Two of the four
state points are isomorphic. These two state points �black and
red curves� have virtually identical relaxation behavior, in-
cluding the short-time “cage rattling.” Figure 3 thus confirms
isomorph properties 3c and 3d. For the two isomorphic state
points of Fig. 3�a�, Fig. 3�b� shows the four-point dynamic
susceptibility defined61 by �4�t̃�=N���Fs�q̃ , t̃��2�, i.e., the
mean-square fluctuation of the self-part of the intermediate
scattering functions. The quantity �4�t̃� measures the degree
of dynamic heterogeneity on a given time scale. By the pre-
dicted isomorph invariance of time-correlation functions as
functions of reduced time �property 3c� �4�t̃� is predicted to
be invariant, which is indeed the case.62,63

As shown briefly in Sec. II and in detail in Appendix A,
only strongly correlating liquids have isomorphs. A system
that is not strongly correlating �Paper I� is the SPC water
model, where the hydrogen bonds are mimicked using Cou-
lomb interactions and the oxygen atoms interact via a LJ
potential.64 The fact that this model has near zero WU cor-

relation reflects �Paper I� water’s density maximum. In order
to prove that SPC water does not have isomorphs, suppose
that it did. Then state points with the same reduced diffusion
constant would have same structure. Figure 4�a� shows the
reduced diffusion constant as a function of temperature for
two sets of isochoric state points. Interpolation with a poly-
nomial was done in order to identify the temperature where
the two densities have the same reduced diffusion constant
�T=252 K�. Figure 4�b� shows the radial distribution func-
tions of these two state points. Clearly, SPC water does not
have isomorphs.

C. Out-of-equilibrium properties: Aging

We showed by example that isomorphic state points
have the same scaled static and dynamic correlation func-
tions, but all properties tested so far were equilibrium prop-
erties. What happens when a strongly correlating liquid is
taken out of equilibrium? To answer this we simulated
temperature/density jumps from equilibrium, i.e., instanta-
neous changes of these two variables to new values. All
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states involved in the “aging experiments” belong to the state
points whose self-intermediate scattering functions are plot-
ted in Fig. 3�a�.

Figure 5�a� shows the time evolution of the potential
energy when a jump is made from equilibrium, bringing the
KABLJ liquid to a new state point which is isomorphic to the
initial state. The jump was performed as follows: we instan-
taneously increased the box volume without changing par-
ticle positions �the initial overshoot is due to this� and simul-
taneously changed the thermostat temperature to the final
temperature. There are no signs of slow relaxation after the
jump. Thus the system is immediately in equilibrium, as pre-
dicted for jumps between isomorphic state points �property
4a�.

The horizontal �red� line in Fig. 5�b� shows the data of
Fig. 5�a�, now on a logarithmic scale with time shifted such
that the jump occurs at t=0. Here it is even more clear that
jumps between isomorphic state points preserve equilibrium.
In contrast, the 3→2 and 4→2 jumps both age slowly to
equilibrium, where all three initial states �1�, �3�, and �4�

have the same density. Clearly, instantaneous equilibration is
a feature of jumps between isomorphic points only.

The preservation of equilibrium for jumps between iso-
morphic state points has important consequences for general
jumps �Fig. 6�. Consider first the inset of Fig. 6. Suppose we
start in equilibrium at state point �1� and change temperature
and density to T3 and �3. According to property 4b, if state
point �2� is isomorphic to state point �1�, the observed relax-
ation behavior for the 2→3 jump should be the same as for
the 1→3 jump. The simulations confirm this prediction.

We can now understand why the 3→2 jump in Fig. 5�b�
approaches the equilibrium potential energy from below, al-
though state point �3� has an average potential energy which
is slightly higher than that of state point �2� �compare the
inset of Fig. 5�b��. This is because whenever a jump is per-
formed, the system makes an instantaneous isomorphic jump
to the new density to relax from here to the final state point
by moving on the given isochore. Thus in Fig. 5�b�, the 3
→2 jump is first an isomorphic jump to the state with correct
density, a state that has lower average potential energy than
state �2�. Only thereafter the system relaxes toward state �2�.

In most real experiments pressure, not density, is con-
trolled. The only difference is that an instantaneous isomor-
phic jump goes to a new pressure, instead of to a new den-
sity, and that the subsequent relaxation follows an isobar
instead of an isochore. Thus relabeling the dashed lines in
the insets of Figs. 5�b� and 6 to isobars would qualitatively
illustrate an experimental temperature and pressure jump.

IV. RELATING ISOMORPHS TO SELECTED TOPICS
OF LIQUID STATE THEORY AND EXPERIMENT

This section discusses some connections between the
isomorph concept and current liquid state theory and experi-
ment. No subject is treated in depth; the purpose is merely to
show by example that isomorphs fit nicely into a number of
previous findings. In most cases we demonstrate how these
are consistent with the isomorph concept, but in a few cases
a previous finding is shown to be a consequence of the ex-
istence of isomorphs for strongly correlating liquids.
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FIG. 5. �a� Results from simulating an instantaneous temperature and den-
sity jump applied to the KABLJ liquid, starting from equilibrium and jump-
ing to a state which is isomorphic with the initial state �LJ units�. Except for
the transient no relaxation is associated with the jump, showing that the
system is instantaneously in equilibrium. �b� Potential energy relaxation
toward equilibrium for the KABLJ liquid for different jumps: 1→2, 3→2,
and 4→2 �see the inset�. The 1→2 jump is the isomorphic jump of �a�, the
two other jumps are not between isomorphic state points. The results shown
in �a� and �b� are averaged over ten independent simulations.

FIG. 6. Potential energy relaxation toward equilibrium for the KABLJ liq-
uid comparing jumps 1→3 and 2→3 �see the inset�. The two relaxations
are predicted to be identical because state points �1� and �2� are isomorphic.
The results shown are averaged over ten independent simulations.
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A. Phenomenological melting rules

Melting is an old subject of condensed-matter physics.
There has long been a good understanding of the statistical
mechanics of melting via the density functional theory of
Ramakrishnan and Yussouff.65 Supplementing this are a
number of phenomenological melting rules. Perhaps the
most famous is the Lindemann criterion, according to which
melting takes place when the crystal’s vibrational root mean-
square displacement is about 10% of the nearest-neighbor
distance.66,67

For a strongly correlating liquid the melting curve in the
phase diagram must be parallel to nearby liquid and crystal-
line isomorphs �the isomorph concept applies to the crystal-
line phase as well as to the liquid�. This is because if an
isomorph were to cross the melting curve, the Boltzmann
factors favoring crystalline order would dominate one part of
that isomorph and be negligible on another part; this contra-
dicts the isomorph structure invariance. For strongly corre-
lating liquids the invariance of the crystalline excess entropy
along the melting line implies, as is easy to show, pressure
invariance of the Lindemann melting criterion. Moreover,
since both crystalline and liquid excess entropy are invariant
along the melting curve, the melting entropy must be pres-
sure independent.

There are other consequences of melting curves being
isomorphs for strongly correlating liquids. Thus along the
melting curve, slightly to the liquid side, a number of prop-
erties are predicted to be invariant: the reduced viscosity, the
reduced surface tension, the reduced diffusion constant, the
reduced heat conductivity—in fact all isomorph invariants.
There are several theoretical and experimental works point-
ing in these directions.68–73 For instance, the reduced-unit
static structure factor of liquid iron measured by x-ray scat-
tering is invariant along the melting curve for pressures up to
58 GPa.74 Finally, note that the Hansen–Verlet75 criterion,
according to which melting takes place when the liquid
structure factor peak is 2.85, due to the invariance of the
structure factor in reduced coordinates, is also consistent
with the melting curve being an isomorph for strongly cor-
relating liquids.

B. Rosenfeld’s excess entropy scaling

Rosenfeld76,77 presented in 1977 an interesting observa-
tion: for a large class of model systems the reduced transport
coefficients �Table I� appear to be functions of the excess
entropy only. He justified what is now known as “excess
entropy scaling” by reference to variational hard-sphere ther-
modynamic perturbation theory.76 He emphasized that excess
entropy scaling is a semiquantitative model, rather than a
theory, and referred to excess entropy scaling as a principle
of corresponding states. For any given strongly correlating
liquid excess entropy scaling follows from the isomorph
properties derived in Sec. II, although this does not explain
why the functional excess entropy dependence appears to be
quasiuniversal.76,77 Recent simulations of the Gaussian core
model by Truskett and co-workers78 provide an example

where Rosenfeld’s excess entropy scaling fails. This is not
surprising, since this model due to the soft core is not ex-
pected to be strongly correlating.

A scaling procedure that is similar in spirit to Rosen-
feld’s excess entropy scaling was discussed by Dzugutov79 in
1996. He showed from simulations that the reduced diffusion

constant follows D̃�exp�S2 /NkB� for a number of systems,
where S2 is the two-particle entropy. This relation is also

consistent with the isomorph concept, because D̃ and S2 are
both isomorph invariants �properties 3e and 2b�.

From the isomorph viewpoint there is no reason to ex-
pect Rosenfeld’s or Dzugutov’s equations to hold for liquids
that are not strongly correlating. While genuine Rosenfeld
scaling seems to fail for liquids that are not strongly corre-
lating, it appears that related excess entropy scaling proce-
dures hold for many such liquids �see, e.g., Refs. 80 and 81�.
Why this is so is an important question for future research.

C. Young and Andersen’s approximate scaling
principle

In 2003 Young and Andersen82,83 conjectured an ap-
proximate scaling principle according to which two liquids
have similar dynamical properties if they at two same-
density state points have similar static pair-correlation
functions—even if their potentials are quite different and the
temperatures differ. This was confirmed by simulations com-
paring the LJ liquid to the same system with a Weeks–
Chandler–Andersen �WCA� cutoff �where only the repulsive
part of the potential is kept�. At same density the latter sys-
tem required lower temperature in order to have almost iden-
tical pair-correlation functions. When temperature was prop-
erly adjusted, however, the two liquids were shown to have
similar coherent and incoherent intermediate scattering func-
tions, as well as similar velocity and current autocorrelation
functions. This confirms the authors’ proposed approximate
scaling principle for the single-component LJ liquid �in con-
trast, Berthier and Tarjus84 very recently showed that the
WCA approximation applied to the KABLJ liquid does not
reproduce this liquid’s dynamics�.

As pointed out by Young and Andersen, if not only the
pair-correlation but all higher-order correlation functions are
identical for two liquids, they must have proportional NVT
Boltzmann statistical weights for all microscopic configura-
tions. This suggests generalizing the isomorph concept to an
equivalence relation between different liquids. One may de-
fine two liquids to be isomorphic if �1� they are both strongly
correlating and �2� a pair of state points exists such that Eq.
�4� is obeyed for all physically relevant microscopic configu-
rations with same reduced coordinates �in the form general-
ized to two different potential energy functions, U1 and U2�.
Clearly when this is obeyed, the entire system of isomorphic
curves of one liquid maps onto that of the other liquid.

D. Two-order parameter maps of Debenedetti and
co-workers

In a series of publications Debenedetti and
co-workers85–90 studied liquid structure in terms of a transla-
tional order parameter t and a system-dependent orientational
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order parameter that may be, for instance, the often used
quantity Q6. The translational order parameter is defined as
t=�0

r̃c�g�r̃�−1�dr̃, where g�r̃� is the reduced-coordinate pair
distribution function and r̃c=�1/3rc is a cutoff; Q6 is defined
from sixth-order spherical harmonics involving the “bonds”
to the 12 particles nearest a given particle �averaged over all
particles�.

The general picture one finds by plotting t versus Q6 in
so-called ordering maps is that for the LJ liquid and related
systems there is a striking collapse, showing that “bond-
orientational order and translational order are not indepen-
dent for simple spherically symmetric systems at
equilibrium.”89 For water87,90 and silica,88 on the other hand,
there is no such collapse; here the order parameters cover a
two-dimensional region of order-parameter space. These re-
sults may be explained by reference to isomorphs: since both
order parameters are isomorph invariants, they cannot vary
independently for strongly correlating liquids like the LJ liq-
uid and related systems. Water and silica are not strongly
correlating �Paper I�, so there is no reason to expect their two
order parameters to follow each other.

E. Viscous liquid dynamics

The dynamics of viscous liquids is a long-time focus of
our research at the DNRF “Glass and Time” center, and the
class of strongly correlating liquids was identified in our ef-
forts to understand the properties of single-order-parameter
viscous liquids.1,2,22,23 As shown below, the isomorph con-
cept throws new light on facts and puzzles of the physics of
viscous liquids.

1. Cause of the non-Arrhenius relaxation time: The
“isomorph filter”

A major puzzle concerning viscous liquids approaching
the glass transition is the origin of the non-Arrhenius tem-
perature dependence of their average relaxation time
�.10,12–21,91–93 In many cases the relaxation-time increase is
truly dramatic, with a factor of 10 or more slowing down if
temperature is decreased by just 1%. There are several theo-
ries for this. Although it is not obvious that any universal
theory exists, most workers in the field assume this to be the
case. A universal theory must apply also to strongly correlat-
ing liquids, of course. This implies a criterion which we shall
refer to as the isomorph filter. The idea is the following.
Since the reduced average relaxation time is an isomorph
invariant, this quantity can only be controlled by a quantity
that is also an isomorph invariant. All theories relate ln � to
some quantity. For any viscous liquid, as regards variation
with state point one may assume that ln �
 ln �̃, because the
temperature variation in the average relaxation time domi-
nates completely over the reduced time unit’s 	T temperature
dependence. Thus the average relaxation time must be con-
trolled by an isomorph invariant. Consider now some ex-
amples.

According to the Adam–Gibbs model48,94 the relaxation
time � varies as ln ��1 /TSconf�� ,T�, where Sconf�� ,T� is the
configurational entropy discussed in connection with iso-
morph property 1b. Adam and Gibbs wrote the proportional-

ity constant as the product of a critical configurational en-
tropy sc

� and a term �� which is “largely the potential energy
hindering the cooperative rearrangement per monomer seg-
ment,” and they argued that the state-point dependence of
these terms can be neglected. This is also what is usually
done in comparing with experiments. In this case, however,
since �̃ and Sconf�� ,T� are both invariant along an isomorph,
the model is inconsistent with the isomorph invariance due to
the extra factor T. Thus in this version the model cannot
apply to strongly correlating liquids. Alternatively, the pro-
portionality constant must be allowed to vary with state
point. Indeed, simulations of Sastry95 of the KABLJ liquid
show good agreement with the Adam–Gibbs model if the
constant is density dependent, a density dependence which,
in order not to violate isomorph invariance, must be—and to
a good approximation is—given by a factor proportional to
��. Although the original Adam–Gibbs model cannot apply
for strongly correlating liquids �van der Waals and metallic
liquids�, it should be noted that for very fragile liquids the
temperature dependence of Sconf�� ,T� dominates over the T
factor in the Adam–Gibbs expression;48 for these liquids the
model may work fairly well in practice. Another possibility
is that Sconf�� ,T� alone controls the relaxation time. Interest-
ingly, this was suggested by Bestul and Chang96 in a paper
preceding Adam–Gibbs by one year, which showed data con-
sistent with a universal value of the excess entropy at the
glass transition for several liquids. Much more recently,
Truskett and co-workers97 suggested that the excess entropy
Sex controls the relaxation time in the spirit of Rosenfeld76,77

scaling; this is also consistent with isomorph invariance. As a
final example of a theory where entropy controls the relax-
ation time, consider the random first-order transition �RFOT�
theory of Wolynes and co-worker �reviewed in Ref. 98�. Ac-
cording to this theory and its generalization by Bouchaud
and Biroli,99 for some exponents x and y the relaxation time
is given by ln �� �Y /T�xSconf

−y �� ,T�, where Y is a surface ten-
sion at the molecular scale. This expression is isomorph in-
variant only if Y �T. This is, however, precisely what was
predicted in 2000 on different grounds by Xia and
Wolynes,100 so the RFOT passes the isomorph filter.

The free-volume model of Cohen and Grest predicts that
ln ��1 /v f�� ,T�, where v f�� ,T� is the free volume. As it
stands, this model does not survive the isomorph filter be-
cause the proportionality constant is state-point independent
and, although the free volume definition is not obvious,
v f�� ,T� is hardly an isomorph invariant. If one imagines v f

to be a geometrically determined quantity measured in units
of 1 /�, however, the model prediction is invariant along an
isomorph. Thus, while v f�� ,T� cannot determine the relax-
ation time, the quantity v f�� ,T�� can possibly. The shoving
model21,101,102 predicts that ln ��G��� ,T�Vc /kBT, where Vc

is a characteristic volume which in experiments is of order of
the molecular volume. This model, which is one of several
related “elastic” models,21 is consistent with the existence of
isomorphs if Vc is geometrically determined: in this case
Vc�1 /�, and because G��� ,T� /T� is an isomorph invariant
�property 3f�, this implies that G��� ,T�Vc /kBT is isomorph
invariant. The vibrational mean-square displacement version
of the elastic models ln ��a2 / �x2� is not isomorph invariant
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if a is assumed to be independent of density,103 but it does
survive the isomorph filter if the reasonable assumption is
made104 that a��−1/3. As a final example, we note that the
entropic barrier hopping theory of Schweizer and
co-workers105,106 in a certain limit predicts that ln �
�d2�F2� / �kBT�2, where d is an effective hard-sphere diam-
eter and �F2� is the short-time-averaged single-particle mean-
square force. This expression is not isomorph invariant, but
the modest modification of it obtained by replacing d by
�−1/3 leads to an isomorph invariant expression, as is easily
shown from Eq. �9�.

2. Isochronal superposition

Building on earlier works by Roland et al.,107 in 2005
Ngai et al.108 published a paper entitled “Do theories of the
glass transition, in which the structural relaxation time does
not define the dispersion of the structural relaxation, need
revision?” The authors showed here that for many viscous
liquids and polymers the average relaxation time determines
the shape of the dielectric loss peak. Thus whether the aver-
age relaxation time is increased by lowering temperature or
by increasing pressure or a combination thereof, the effect is
the same on the relaxation time distribution as monitored via
the dielectric loss. This result, which we, for brevity, refer to
as “isochronal superposition,” was puzzling at the time �at
least to us�. Isochronal superposition now appears as a con-
sequence of the existence and properties of isomorphs: any
strongly correlating liquid must obey isochronal superposi-
tion because according to properties 3c and 3d, both the av-
erage relaxation time and the dielectric spectrum are iso-
morph invariants �when given in reduced units, but as
mentioned their use makes little difference for viscous liq-
uids�. Thus, no matter how the thermodynaic conditions are
changed to bring the liquid to a state with a certain relaxation
time, all such states are isomorphic. Consequently, they have
the same relaxation spectra for quantities probed by linear
response experiments �property 3c�. In Ref. 108 hydrogen-
bonding liquids were quoted explicitly as exceptions to iso-
chronal superposition; this is consistent with the fact that
these liquids are not strongly correlating �Paper I�.

3. How many parameters are needed for describing a
viscous liquid?

In the early days of glass science it was actively debated
whether one or more “order parameters” are required to de-
scribe glass structure and the glass transition. Note that the
term order parameter has a slightly different use in tradi-
tional glass science than in the theory of critical phenomena.
The original considerations of Prigogine and Defay,109

Davies and Jones,110,111 and others referred to the glass tran-
sition as a second-order phase transition in the Ehrenfest
sense. It was recently shown that strongly correlating liquids
are precisely the liquids that to a good approximation may be
regarded as single-order-parameter liquids;1,22 a review of
the connection was given in Ref. 23. Strongly correlating
liquids have isomorphs, so it should be possible to link iso-
morphs directly to the single-order-parameter scenario. In-
deed, by labeling the collection of isomorphic curves in the

phase diagram with a continuously varying real number, a
formal single-order-parameter description throughout the
phase diagram is arrived at. This suggests a generic way of
defining the single-order-parameter scenario that is implicit
in the old works. The isomorph label is not unique, obvi-
ously; it may be chosen as any property that is isomorph
invariant, for instance Sex or CV.

F. Some further potential isomorph connections

�1� In 1989 Baranya and Evans50 reported from simula-
tions that the excess entropy of the LJ liquid to a good ap-
proximation equals the two-particle entropy S2 plus a con-
stant. This is consistent with the existence of isomorphs
because on an isomorph both S2 and Sex are invariant. That
is, because the LJ liquid is strongly correlating, if for in-
stance Sex were an isomorph invariant but S2 were not, the
Baranya–Evans finding could not be correct.

�2� Saija et al.112 in 2001 showed by simulations of both
the Yukawa and the LJ liquids that the scaled radial distribu-
tion functions are identical for states where the excess en-
tropy equals the two-particle entropy. This is consistent with
the fact that these liquids are both strongly correlating be-
cause scaled radial distribution function, excess entropy, and
two-particle entropy are all isomorph invariants.

�3� The basic idea of mode-coupling theory—that statics
determines the dynamics—is consistent with the existence of
isomorphs: for any strongly correlating liquid, if two state
points have the same reduced pair-correlation functions, they
are isomorphic. This means that they have the same �re-
duced� dynamics, so in this sense the pair correlation func-
tion “determines” the dynamics. From the isomorph perspec-
tive mode-coupling theory may be expected to work best for
strongly correlating liquids.

�4� Recently, Roland briefly reviewed characteristic
times and their invariance to thermodynamic conditions from
a general point of view, including also systems that are not
liquids.113 He showed that quite different transitions in sys-
tems with slow relaxations—onset of activated dynamics,
dynamic crossover in viscous liquids and polymers, order-
disorder transitions in liquid crystals, vitrification—at vary-
ing temperature and pressure all take place at state points
with the same value of the relaxation time. The conclusion is
that113 “the control parameter driving these transitions has
the same functional dependence on T, p, and V as the relax-
ation time.” For strongly correlating liquids and solids, this
follows from the existence of isomorphs.

�5� The concept of hidden scale invariance �Paper III�
may have implications beyond liquid state theory. Thus, very
recently Procaccia and co-workers114 studied by simulation
plastic flow of amorphous solids in the athermal limit. For
two-dimensional solids composed of multidisperse particles
with the interaction length taken from a Gaussian distribu-
tion, they showed that stress-strain curves at different densi-
ties collapse to a master curve. This happens when stress is
scaled by ��, where � is 5.87 when the repulsive part of the
potential can be fitted by the IPL term r−10. The number 5.87
is not far from the number 5 predicted by the two-
dimensional exponent �=n /2 for IPL potentials.115
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V. CONCLUDING REMARKS

This paper introduces the concept of isomorphic curves
in the phase diagram of a strongly correlating liquid. The
existence of isomorphs reflects the liquid’s hidden scale in-
variance �Paper III�, and therefore the class of strongly cor-
relating liquids is identical to the class of liquids with iso-
morphs �Appendix A�. Isomorphs may be labeled by any of
these invariants, for instance Sex or CV. The isomorph con-
cept, in fact, may be justified by starting from the concept of
an order parameter labeling curves in the phase diagram of
same physical properties: suppose a liquid is described by a
single order parameter in the sense that many of its proper-
ties are determined by the value of the order parameter. In
this case one may draw curves in the phase diagram along
which these properties are all invariant. If one asks how it is
that several properties could possibly correlate in this way,
the simplest answer is that for any two state points on a
constant order parameter curve, the canonical probabilities
are proportional for microscopic configurations that some-
how correspond to each other—and the simplest possibility
is that corresponding configurations are those which trivially
scale into one another. This is nothing but the isomorph defi-
nition. Thus the isomorph concept may be arrived at—via
some extrapolation—by postulating that single-order-
parameter liquids exist and inquiring into their properties.

All isomorph invariants apply to IPL liquids. But as em-
phasized repeatedly, the converse is not true: not all proper-
ties that are invariant for an IPL liquid along states obeying
�n/3 /T=const generalize to become isomorph invariants. The
exceptions derive from the fact that the constant C12 of Eq.
�4� generally differs from unity. Only IPL invariants that are
independent of the identity C12=1, which characterizes IPL
liquids, generalize to the class of strongly correlating liquids.

The present and previous papers on strongly correlating
liquids show that this class of liquids is simpler than liquids
in general. This is consistent with the general understanding
among liquid-state specialists for many years, according to
which nonassociated liquids are generally simpler than asso-
ciated ones. The virial/potential energy correlation coeffi-
cient R of the NVT ensemble provides a quantitative criterion
for distinguishing simple liquids from the more complex—
and admittedly often more spectacular—liquids that are not
strongly correlating.
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APPENDIX A: EQUIVALENCE OF THREE CONDITIONS

This appendix proves that the following three conditions
are equivalent for any liquid:

• �a� The liquid is strongly correlating.

• �b� The liquid has isomorphs.

• �c� The liquid has curves in the phase diagram along
which the reduced-coordinate constant potential energy
hypersurface is invariant.

Only true IPL liquids obey these conditions rigorously
�i.e., with 100% correlation in �a��, and the equivalences may
be stated more accurately as follows: a liquid is strongly
correlating if and only if it has isomorphs to a good approxi-
mation, which happens if and only if the liquid has curves in
its phase diagram along which the reduced-coordinate con-
stant potential energy hypersurface is almost invariant. It is
instructive to prove all six implications, although logically
�a�⇒ �b�⇒ �c�⇒ �a� would suffice.

Before proving the equivalences we note a few facts. If �
denotes the variation between two infinitesimally close mi-
croscopic configurations with same reduced coordinates, we
first show that

�U = �d ln ��W . �A1�

For two infinitesimally close microscopic configurations
with the same reduced coordinates �r̃i��1/3ri�, one has 0
=�r̃i= ��−2/3 /3��d��ri+�1/3�ri, i.e., �ri=−�1 /3��d ln ��ri.
The change in potential energy between the two configura-
tions is given by �U=�i�ri ·�ri

U, which via the definition of
the virial W�−�1 /3��iri ·�ri

U leads to Eq. �A1�. We note
further the following identity:

�U

T
� =

�d ln ��W − �d ln T�U
T

. �A2�

This follows by differentiation and use of Eq. �A1�. Finally,
note that the infinitesimal version of the isomorph condition
equation �4� is

�U

T
� = const. �A3�

At any given state point Q, if the average potential energy is
denoted by �U�Q, we define the constant potential energy
hypersurface � as the subset of R3N given by

� = ��r1, . . . ,rN� � R3N�U�r1, . . . ,rN� = �U�Q� . �A4�

The corresponding reduced-coordinate constant potential en-

ergy hypersurface �̃ is given by

�̃ = ��r̃1, . . . , r̃N� � R3N�U��−1/3r̃1, . . . ,�−1/3r̃N� = �U�Q� .

�A5�

Proof that �a�⇔ �b�: A strongly correlating liquid has
�near� proportionality between virial and potential energy
fluctuations, �W=��U. Thus at any given state point, W
=�U+C to a good approximation for the physically relevant
microscopic configurations. If density and temperature are
changed infinitesimally such that d ln T=� d ln �, Eq. �A2�
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implies that ��U /T�=const, which is the isomorph condition
equation �A3�. Suppose conversely that a liquid has isomor-
phs, and let � denote the difference between two arbitrary,
physically relevant configurations at the state point in ques-
tion. Then Eq. �A3� implies ���U /T�=0 where � �as usual�
refers to changes from one configuration to another infini-
tesimally close by with the same reduced coordinates. Via
Eq. �A2� this implies �d ln ���W= �d ln T��U, i.e., the liquid
is strongly correlating with �=d ln T /d ln �.

Proof that �a�⇔ �c�: For a strongly correlating liquid
�W��U for fluctuations between physically relevant con-
figurations at any given state point. This implies that the
hypersurfaces of constant virial and constant potential energy
coincide. In particular, W is constant on the state point’s
constant potential energy hypersurface �. Accordingly, if
density is changed infinitesimally, the change in potential
energy between microscopic configurations with the same
reduced coordinates is the same for all microscopic configu-
rations on � �Eq. �A1��. Thus a new hypersurface of con-
stant potential energy is arrived at by slightly scaling �; by
adjusting temperature the new hypersurface is where the po-
tential energy equals the average potential energy. Finally we
note that the new and old hypersurfaces by construction have
same reduced coordinates, thus the two state points have the

same �̃. Suppose conversely that two infinitesimally close

state points have the same �̃. All points on the two constant
potential energy hypersurfaces differ by the same potential
energy, which via Eq. �A1� implies that W must be constant
on each hypersurface. In other words, W is constant on sur-
faces where U is. This implies 100% correlation between W
and U. For large systems the fluctuations are small, rela-
tively, and a first order Taylor expansion of the WU relation-
ship leads to a linear relation between W and U.

Proof that �b�⇔ �c�: Suppose a liquid has isomorphs.
For a state point Q on an isomorph I one concludes from
Eq. �9� that �U�Q=kBT�f I�+g�Q�, where the �canonical�
average �f I� by Eq. �8� is independent of Q. Conse-

quently, �̃= ��r̃1 , . . . , r̃N��R3N �kBTfI�r̃1 , . . . , r̃N�+g�Q�
=kBT�f I�+g�Q��= ��r̃1 , . . . , r̃N��R3N � f I�r̃1 , . . . , r̃N�= �f I�� is
invariant along the isomorph. Suppose conversely that two

state points have the same �̃. For these state points micro-
canonical averages are identical for all quantities that may be
expressed as functions of the reduced coordinates. By the
equivalence of the microcanonical and the canonical en-
sembles, for the two state points in question canonical en-
semble averages are likewise identical for all quantities that
are functions of the reduced coordinates. This can only be so
if there is identity of the normalized canonical probability
factors of any two physically relevant microscopic configu-
rations of the two state points, which have the same reduced
coordinates. This is another way of stating that the two state
points are isomorphic.

APPENDIX B: TWO PROPERTIES OF THE DENSITY
SCALING EXPONENT

This appendix has two purposes: �1� to derive an opti-
mization property of the density scaling exponent � of Eq.
�13� and �2� to prove that any possible state-point depen-

dence of � comes from a density dependence; more accu-
rately it is shown that �=���� in the isomorph approxima-
tion.

As mentioned in the main text there is no unique solu-
tion to the problem of finding the “correct” density scaling
exponent �, i.e., the exponent identifying isomorphs as the
curves along which �� /T=const. First of all, the exponent
must be expected to vary slightly with state point. But even
at a given state point, there is no unique � in the sense that
all isomorph invariants are mathematically constant for
changes obeying Eq. �13�. This is because isomorph proper-
ties are generally approximate, so for instance the curves of
constant excess entropy cannot be expected to be precisely
the curves of constant isochoric specific heat �or constant
reduced relaxation time, etc.�; this just applies to a good
approximation for strongly correlating liquids.

We argued in Sec. II D that at any given state point there
are three obvious gammas, the �1, �2, and �3 of Eq. �10�. We
recommend using �1 and used this in Sec. III when compar-
ing isomorph predictions with computer simulations. This
exponent is to be preferred because it–among other things–
makes the excess entropy an exact invariant. It worked very
well with our simulations of the KABLJ liquid, but as noted
in the main paper �2 works almost equally well.

The excess entropy exponent �1, henceforth just denoted
by �, has an optimization property coming from answering
the following question: At any given state point, suppose we
change density by an infinitesimal amount, how much should
temperature be changed to arrive at a new state point which
is “as isomorphic as possible” with the original state point?
To answer this we note that Eq. �A3� suggests requiring the
quantity F���U /T� to be as constant as possible �where the
symbol � refers to the difference between two infinitesimally
close microscopic configurations with same reduced coordi-
nates�. This is obtained by minimizing ���F�2�. Since ac-
cording to Eq. �A2� one has F� �d ln ��W− �d ln T�U, for a
given density change the quantity to be minimized by vary-
ing temperature is ���d ln ���W− �d ln T��U�2�, i.e.,

�d ln ��2���W�2� + �d ln T�2���U�2�

− 2�d ln ���d ln T���W�U� . �B1�

Equating to zero the derivative of this expression with re-
spect to d ln T leads to

d ln T

d ln �
=

��W�U�
���U�2�

, �B2�

which is the excess entropy gamma of Eq. �13�.
Suppose instead that one asks the complementary ques-

tion: For a given infinitesimal temperature change, what is
the density change giving a new state point that is as “iso-
morphic as possible” with the original state point? In this
case, minimizing Eq. �B1� leads to the �3 of Eq. �10�. Thus,
optimization arguments cannot determine which gamma to
choose.

The second property of the density scaling exponent to
be proved is that if the � of Eq. �13� varies with state point,
this variation can come only from a density dependence.
More accurately, in the isomorph approximation where the
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curves of constant excess entropy and constant excess isoch-
oric specific heat coincide, one has �=����. Recalling that
the excess pressure coefficient �V

ex is defined by �V
ex

= ���W /V� /�T�V �Papers I and III� and denoting the excess
isochoric specific heat per unit volume by cV

ex, Eq. �13� may
be written as

� =
�V

ex

cV
ex . �B3�

If there is identity of the curves in the phase diagram of
constant excess entropy Sex and those of constant �extensive�
excess isochoric specific heat CV

ex �CV
ex=VcV

ex�, the definition
of the density scaling exponent �= �� ln T /� ln ��Sex

implies

� = −  � ln T

� ln V
�

CV
ex

. �B4�

From this we get via the mathematical identity
��x /�y�z��y /�z�x��z /�x�y =−1,

 � ln CV
ex

� ln T
�

V

=
− 1

�
 � ln T

� ln V
�

CV
ex
 � ln CV

ex

� ln T
�

V

=
1

�
 � ln CV

ex

� ln V
�

T

. �B5�

Using CV
ex=T��Sex /�T�V we get via Eq. �B3�,

 � ln CV
ex

� ln T
�

V

=
CV

ex

V�V
ex � ln CV

ex

� ln V
�

T

=
1

�V
ex �CV

ex

�V
�

T

=
T

�V
ex

�2Sex

�V � T
. �B6�

The Maxwell relation ��Sex /�V�T= ���W /V� /�T�V=�V
ex al-

lows us to rewrite this as

 � ln CV
ex

� ln T
�

V

=
T

�V
ex ��V

ex

�T
�

V

=  � ln �V
ex

� ln T
�

V

. �B7�

Because d ln cV
ex=d ln CV

ex at constant volume this implies
that

 � ln �V
ex

� ln cV
ex �

V

= 1. �B8�

Thus at constant volume �V
ex is proportional to cV

ex, i.e., � is
constant on isochores. In particular, since �= ��W /�U�T �see
Eq. �13��, it follows that isochores are straight lines in the
WU phase diagram.

APPENDIX C: RELATING THE CORRELATION
COEFFICIENT OF FIGURE 1 TO THE WU
CORRELATION COEFFICIENT R OF EQUATION „2…

In order to distinguish from the WU correlation coeffi-
cient R of Eq. �2�, for the “direct isomorph check” of Fig. 1
we denote by RDI the correlation coefficient between poten-
tial energies of microscopic configurations with same re-
duced coordinates. Writing for a strongly correlating liquid
for each microscopic configuration �W=��U+�, where � is
an “error” term uncorrelated with �U, implies by squaring
and averaging

���W�2� = �2���U�2� + ��2� . �C1�

Multiplying �W=��U+� by �U, averaging and squaring
give

��W�U�2 = �2���U�2�2. �C2�

The left hand side of this is expressed in terms of the WU
correlation coefficient R, giving

���W�2� = �2���U�2�/R2. �C3�

Eliminating ���W�2� between this and Eq. �C1� gives a rela-
tion between the correlation coefficient and the variance of
the error term,

1

R2 − 1 =
��2�

�2���U�2�
. �C4�

Next consider an infinitesimal rescaling of all micro-
scopic configurations to a new density, calling the old and
new potential energies of corresponding microscopic con-
figurations U�1� and U�2�, respectively. If the relative density
change is small, Eq. �A1� minus its average implies for each
microscopic configuration

�U�2� = �U�1� + �d ln ���W�1�, �C5�

which, using �W=� �U+�, becomes

�U�2� = �1 + � d ln ���U�1� + �d ln ��� . �C6�

We can now calculate the correlation coefficient RDI between
the old and new potential energies of microscopic configura-
tions with the same reduced coordinates. In fact, since this
equation is identical in structure to �W=� �U+�, we can
use the result of Eq. �C4�, replacing � with 1+�d ln � and �
with �d ln ���,

1

RDI
2 − 1 =

��2��d ln ��2

�1 + � d ln ��2���U�2�
. �C7�

Using Eq. �C4� to eliminate ��2� / ���U�2� finally implies �us-
ing d ln T=� d ln ��,

1

RDI
2 − 1 = �d ln T�2 1

R2 − 1� . �C8�

Equation �C8� applies to any liquid. If the density
change goes to zero �d ln �→0� and/or the liquid becomes
100% correlating �R→1�, there is a perfect correlation be-
tween the new and old potential energies �RDI→1�, as ex-
pected. For strongly correlating liquids one has to lowest
order 1−RDI= �d ln T�2�1−R�. Using the correlation coeffi-
cient for the KABLJ liquid at the state point studied in Fig. 1
this predicts the observed value of 0.999 for RDI.
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