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The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies
of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes,
however, by phase separating into a pure A particle phase forming a fcc crystal. We present the
thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B) particles showing,
in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A
particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl
crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of
B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the
thermodynamically stable phase. The melting temperature’s variation with B particle concentration at two
constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19
using isomorph theory. Our data demonstrate approximate identity between the melting temperature and
the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid
interface is briefly discussed.
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Standard models are invaluable in physics by providing
well-understood reference systems for testing new ideas.
Well-known examples are the ideal gas model, the Ising
model for critical phenomena [1,2], and the ϕ4 scalar field
theory for renormalization [1,3]. In computational studies of
viscous liquids and the glass transition [4–9], the Kob-
Andersen (KA) binary Lennard-Jones (LJ) mixture has been
the standard model for 20 years [10]. The KA model is a
mixture of 80% large A particles and 20% small B particles.
The model is characterized by a strong AB attraction, which
disfavors phase separation into a pure A phase by making it
energetically costly.When themodel crystallizes invery long
computer runs, this nevertheless happens by phase separation
into a pure A phase forming a face-centered cubic (fcc)
crystalline structure [11,12]. This may be contrasted with the
Wahnström 50=50 binary LJmixture [13], which has a much
more complex crystal structure [14].
In the KA mixture, all particles have the same mass

and interact via LJ pair potentials vðrÞ ¼ 4ε½ðr=σÞ−12−
ðr=σÞ−6� truncated and shifted to zero at 2.5σ with
σBB=σAA ¼ 0.88, σAB=σAA ¼ 0.8, εBB=εAA ¼ 0.5, and
εAB=εAA ¼ 1.5. The large εAB favors stability toward phase
separation. The parameters of the KAmodel were chosen to
mimic the nickel-phosphor mixture [10] that has a eutectic
at 20% P atoms [15]; eutectic mixtures [16] are generally
regarded as optimal for glass formation [17].
Crystallization of binary LJ models has been simulated

by several groups [18–21]. In 2001, Wales and co-workers
showed that the KA system possesses low-lying crystalline
minima [22], confirming the prevailing view that the KA

viscous liquid is not in true thermodynamic equilibrium
[23]. Two years later, Fernandez and Harrowell reported
rapid crystal growth for the 50=50 KA mixture [24] and
argued that, for general KA-type mixtures, the lowest-
energy ordered state consists of coexisting phases of single-
component fcc and equimolar CsCl crystal structures [25].
In 2009, Kob and co-workers reported that the standard
80=20 KA mixture crystallizes in two dimensions, whereas
the 65=35 composition does not [26]. Royall and co-
workers in 2015 showed that locally favored structures
impede crystallization if they do not tile space [27]. In
2016, Bhattacharyya and co-workers showed that the
entropic penalty for demixing is a nonmonotonic function
of composition with a maximum at a composition close to
that of the standard KA model [28].
The below study utilized the software packages RUMD

[29], LAMMPS [30], VMD [31], and a home-written code
[32]. The majority of the simulations involved 8000
particles, and a few had 10 000 particles.
Most KA-model papers focus on density 1.2 in the LJ unit

system defined by the A particle parameters. We determined
the melting temperature of the standard KA liquid at this
density from two-phase simulations by proceeding as
follows. First, the pressure of the liquid was calculated as
a function of temperature at density 1.2 [Fig. 1(a)]. Next, we
determined the lattice parameters of pure A particle fcc
crystals at the temperatures and pressures of Fig. 1(a) [33,34].
The final step was to simulate at each temperature and
pressure a two-phase system composed initially of half KA
liquid and half pureA crystal, choosing a box size compatible
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with the determined lattice constant and using a
“longitudinal” barostat, ensuring constant pressure
perpendicular to the crystal-liquid interface. Over time, the
pure A crystal either grows or shrinks, which changes the
ratio ofA toB particles in the liquid phase.When equilibrium
has been reached, the temperature is the melting temperature

of that particular liquid composition [35]. Figure 1(b) shows
the fraction of B particles where the abscissa is the melting
temperature at the pressure identified in Fig. 1(a). For the
standard 80=20 KA system, we see that, at pressure p ¼
10.19ð3Þ and liquid-phase density 1.2, freezing occurs at the
temperature 1.028(3).
Figure 2 shows a snapshot of the two-phase equilibrium

KA system at T ¼ 1.028 and p ¼ 10.19. A few B particles
(red) have diffused into the pure A crystal, which is to be
expected given the relatively high temperature. The lower
panel shows the density of B particles (red) and of all
particles (black), confirming that the liquid phase has
density 1.2 and contains 20% B particles.
Having determined the pressure of the state point at

which the KA liquid at freezing has density 1.2, we proceed
to establish the composition-temperature phase diagram at
this pressure (Fig. 3). The phase diagram was arrived at by
the above method in which the solid-liquid interface is
“pinned” due to the composition constraint in the liquid.
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FIG. 1. Determining the standard KA system’s melting temper-
ature and pressure when the liquid at coexistence has density 1.2.
(a) The pressure of the KA liquid at density 1.2 as a function of
temperature. (b) The fraction of B particles in the liquid phase of
an equilibrated two-phase simulation at this pressure. The melting
temperature of the density 1.2 KA liquid is seen to be given by
Tm ¼ 1.028ð3Þ at pressure p ¼ 10.19ð3Þ.

FIG. 2. (Upper) Snapshot of a two-phase simulation in a
periodic box at the coexistence temperature 1.028 and pressure
p ¼ 10.19 (A particle LJ units). A particles are gray and B
particles are red. The density of the liquid phase is 1.2. (Lower)
Overall density (black dotted line) and B particle density (red
line) along the z direction. The fraction of B particles in the liquid
phase is 0.24=1.20 ¼ 20%.
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FIG. 3. Phase diagram of KA-type mixtures at pressure
p ¼ 10.19, where χB is the fraction of B particles in the
equilibrium liquid phase. The solid blue line shows the melting
temperature of the pure A particle fcc crystal, the solid red line
shows the melting temperature of the CsCl structure, and the short
solid purple line shows the melting temperature of the PuBr3
structure. Orange symbols give the melting temperature of other,
less stable structures at selected compositions (see text). The two
dashed black lines are isodiffusional lines. The green crosses show
the temperature Tmin of minimum crystallization time for a given
χB; the colored regions are where rapid crystallization occurs,
defined by t� < 2 × 105 for 8000 particles. (Upper) Minimum
crystallization time. Extrapolations based on third-order polyno-
mials (red dashed lines) suggest that the best glass former is at a
higher B particle composition than the eutectic.
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When the liquid has the same composition as the crystal,
this constraint is absent, however, in which case we used
the interface-pinning method [36].
At small B particle concentrations, the solid phase is a

pure A-phase fcc crystal. Upon increasing the B particle
concentration, at some point the system crystallizes instead
into the 50=50 CsCl structure of two interpenetrating cubic
lattices of A and B particles [24,28]. The eutectic of these
two crystal phases is located around 26% B particles, but
interestingly there is a narrow region around the eutectic in
which the bipyramidal orthorhombic PuBr3 structure based
on triangular prisms is the thermodynamically stable phase.
We also studied the Al2Cu, Fe3C, and Ni3P structures
shown by Fernández and Harrowell to be of low energy at
T ¼ 0 and p ¼ 0 [37], but found that their melting temper-
atures are all lower (compare Fig. 3 and Table I). In Fig. 3,
“layered” denotes a structure of alternating layers of CsCl
and pure A particle fcc crystals, which is known to have low
energy at T ¼ 0 [22,24].
To investigate the dynamics of crystallization, we uti-

lized the following protocol for a range of compositions
and temperatures (p ¼ 10.19): First, one equilibrates up to
ten liquid configurations at the coexistence temperature.
Subsequently, the temperature is changed to the desired
value and one computes the crystallization time t�, defined
as the average time at which 10% of the particles are in a
crystalline environment (monitored by the crystal order
parameter defined as the absolute value of the density’s
Fourier transform at the fundamental lattice k vector [38]).
The blue and red areas in Fig. 3 are regions with rapid
crystallization. As expected, the spontaneously formed
crystals are fcc for 0%–15% B’s and CsCl for 41%–
50% B’s. The green crosses show for each composition
the temperature Tmin at which the crystallization time is at a
minimum, t�min. The upper panel shows t�min.
The melting line in Fig. 3 is for p ¼ 10.19, the pressure

at which the coexisting liquid for the standard 80=20 KA
system has density 1.2. The melting temperature’s variation
with B particle concentration at other pressures or at
constant liquid-phase density may be estimated from the
p ¼ 10.19 results from the fact that the melting line to

a good approximation follows a liquid isomorph [8,39].
The estimate, which makes use of the fact that LJ-type
systems are R-simple, i.e., have strong virial potential-
energy correlations [40–42], works as follows. For any
mixture of LJ particles, if the melting temperature at liquid
density ρ0 is T0, the melting temperature T at liquid density
ρ is approximately given [43,44] by

T=T0 ¼ ðγ0=2 − 1Þðρ=ρ0Þ4 − ðγ0=2 − 2Þðρ=ρ0Þ2: ð1Þ

TABLE I. State point data for the liquid in coexistence with different crystalline states at pressure p ¼ 10.19 at the specified B particle
concentrations in the liquid phase (A particle LJ units). Crystal structures are identified by prototype, Hermann-Mauguin space group,
and International Union of Crystallography number. Tm is the melting temperature, ρs and ρl are the solid and liquid densities, us and ul
are the average potential energies per particle of the solid and liquid phases, ΔS is the constant-pressure entropy of fusion calculated
from the parameters and the phase-equilibrium condition ΔG ¼ 0.

χliquidB Tm ρs ρl us ul ΔS

fcc [Fm3̄m; 225] 0% 1.341(4) 1.0535 0.9796 −3.6460 −2.7971 1.177
PuBr3 [Cmcm; 63] 25.5% 0.935(8) 1.3515 1.2712 −7.1192 −6.3170 1.367
Fe3C [Pnma; 62] 25.0% 0.820(8) 1.3501 1.2950 −7.1446 −6.5360 1.134
Ni3P [I4̄; 82] 24.8% 0.767(6) 1.3582 1.2878 −7.0759 −6.6409 1.102
Al2Cu [I4̄=mcm; 140] 33.4% 0.875(8) 1.4256 1.2858 −7.1720 −6.9785 1.109
CsCl [Pm3̄m; 221] 49.4% 1.394(4) 1.6427 1.4392 −7.5850 −5.9561 1.798
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FIG. 4. Isomorph-theory estimated melting temperature as a
function of B particle concentration at fixed liquid-phase density
ρ ¼ 1.2 (triangles), as well as at pressures p ¼ 0 and p ¼ 30
(squares and diamonds). The circles connected by colored full
lines are the results from Fig. 3, giving the reference states from
which the open symbols are predicted. Red crosses are the actual
melting temperatures. (Inset) Melting temperature Tm versus the
onset temperatures T0 (not to be confused with the above
isomorph reference temperature), identified by Coslovich and
Pastore at which the A and B particle dynamics (black and red)
change from Arrhenius to non-Arrhenius temperature depend-
ence [45]. The four points shown represent different densities
(pressures) of the standard 80=20 KA model.
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Here γ0 is the density-scaling exponent at (ρ0, T0) computed
from equilibrium, constant-density canonical-ensemble
fluctuations via γ0 ¼ hΔUΔWi=hðΔUÞ2i, in which U is
the potential energy andW is the virial [8]. At liquid density
1.2, the predictions based on Eq. (1) are shown as triangles
in Fig. 4.
If one wishes to estimate from the p ¼ 10.19 results the

melting temperature at other pressures, the following
procedure is employed. Along a LJ isomorph, the pressure
varies as p=ρ¼kBTþð2w0−4u0Þðρ=ρ0Þ4−ðw0−4u0Þ×
ðρ=ρ0Þ2, in which w0 and u0 are the virial and potential
energy per particle at the reference state point (ρ0, T0) [46].
Equation (1) is inserted into this expression, resulting in
pðρÞ=ρ ¼ Aðρ=ρ0Þ4 − Bðρ=ρ0Þ2, in which A ¼ kBT0ðγ0=
2 − 1Þ þ 2w0 − 4u0 and B ¼ kBT0ðγ0=2 − 2Þ þ w0 − 4u0.
This relation is inverted numerically and the melting
temperature is estimated by inserting ρðpÞ into Eq. (1).
The parameters used in the predictions are given in Table II.
The estimated melting temperature at p ¼ 0 and p ¼ 30

are shown in Fig. 4 as open squares and diamonds,
respectively. These compare reasonably well to the actual
melting temperatures (crosses). At the standard 80=20
composition, the zero-pressure melting temperature is
estimated to be 0.547(8). The actual melting temperature
is 0.525(4), which is 4% below the estimate. The largest
deviation from the isomorph-theory estimated melting
temperatures are found for the CsCl structure. In this case,
there is a four times larger difference between the liquid and
crystal density-scaling exponents than for the A particle fcc
crystal, implying that the melting line is less accurately
represented as an isomorph [39]. We note that for single-
component systems, a more accurate melting-line theory
exists based on a first-order Taylor expansion from the
approximate melting isomorph [39].
By fitting relaxation times for the standard 80=20 KA

system to the frustration-limited-domain theory of the glass

transition [47], Coslovich and Pastore determined the “onset
temperature” below which the non-Arrhenius temperature
dependence of the relaxation time initiates [45]. The inset of
Fig. 4 compares their data to the melting temperature at
different pressures. There is good agreement, which tenta-
tively confirms physical pictures of Sastry et al. [48,49] and
Yanagishima et al. [50]. Though the identity of onset and
melting temperatures may not apply universally, this sug-
gests that a class of liquids exists for which it applies.
The two main crystal structures have different formation

dynamics. Figure 5 shows how the crystal order parameter
fluctuates at solid-liquid equilibrium. The coexisting fcc-
liquid situation is more noisy than the CsCl-liquid case. We
interpret the former as reflecting a rough interface, whereas
in the latter case the interface is flat, i.e., grows layer by layer
[51]. This is consistent with general findings [52] since the
melting entropy is larger in the latter case (Table I).
In summary, we have mapped out the phase diagram of

KA-type binary LJ mixtures showing, in particular, that the
standard 80=20 KA liquid at density 1.2 crystallizes at
T ¼ 1.028ð3Þ. Our findings suggest that KA systems more
stable against crystallization are those of 26%–30% B
particles. This is consistent with recent results of
Ingebrigtsen and co-workers, who have simulated the
density 1.2 KA viscous liquid with 25% and 33.33% B
particles for months on a GPU cluster without being able to
crystallize these systems [53].

This work was supported by the VILLUM Foundation’s
VKR-023455 and Matter (16515) grants.

FIG. 5. The crystal order parameterQ [36] plotted as a function
of time averaged over 103 LJ time units. The blue crosses are
from a fcc-liquid coexistence simulation at T ¼ 1.028, and the
red crosses are from a CsCl-liquid coexistence simulation at
T ¼ 1. These results indicate that the fcc interface is rough,
whereas the CsCl interface is smooth and flat. The latter property
impedes growth of the CsCl crystal. Particles with Q6 > 0.25 are
highlighted in the inserted coexistence pictures, where Q6 is the
rotational order parameter [38].

TABLE II. Thermodynamic quantities along the p ¼ 10.19
melting line used for estimating the melting temperatures at
constant liquid-phase density, as well as at two other pressures
(Fig. 4).

χB T0 ρ0 γ0 u0 w0

0.000 1.341 0.980 5.16 −4.817 9.056
0.085 1.230 1.062 5.15 −5.256 8.372
0.106 1.200 1.084 5.11 −5.372 8.204
0.135 1.150 1.117 5.12 −5.548 7.971
0.163 1.100 1.151 5.10 −5.724 7.752
0.200 1.028 1.200 5.11 −5.974 7.444
0.255 0.935 1.278 5.10 −6.343 7.042
0.291 1.000 1.305 5.13 −6.354 6.808
0.319 1.100 1.316 5.18 −6.263 6.641
0.362 1.200 1.343 5.18 −6.202 6.384
0.410 1.300 1.375 5.19 −6.118 6.115
0.494 1.395 1.439 5.21 −5.953 5.691
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