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Abstract

This philosophiæ doctor thesis has thirteen companion papers. The major part
is a theoretical and simulation study of a class of liquids referred to as strongly
correlating liquids. However, one chapter is dedicated to a study of thermodynamic
fluctuations of simulated phospholipid membranes, and another to a simulation study
of crystallization of a binary mixture. The thesis also includes a short introduction
to supercooled viscous liquids and molecular dynamics simulations. The final chapter
is an outlook. The conclusions are as follows:

A class of model liquids exhibit strong correlation in the thermal fluctuations of
the virial and potential energy at constant volume. The origin of the correlation is
explained for the Lennard-Jones liquid. The pair energy can to a good approxima-
tion be replaced by an inverse power-law plus a linear term. At constant volume
only the inverse power-law gives a contribution to fluctuations, thereby explaining
the correlation. Two quantities characterize a strongly correlating liquid: i) A cor-
relation coefficient, R, that determine the degree of correlation and ii) a slope, γ,
that determine the proportionality between virial and potential energy. If the corre-
lation coefficient is close to unity the liquid is strongly correlating and 3γ equals the
exponent of the inverse power-law.

For viscous liquids, the correlation coefficient equals the inverse square-root of a
Prigogine-Defay ratio defined from three response functions. Also the slope can be
determined from response functions. Literature values of the classical Prigogine-Defay
suggests that van der Waals bonded liquids in general are strongly correlating.

Strongly correlating viscous liquids are more simple than viscous liquids in general:
i) Slow dynamics are determined by a single relaxing parameter. Thus, time- and
frequency-dependent response functions of a given ensemble are proportional. ii) Scale
invariance is inherited from soft-sphere liquids though the effective inverse-power law.
Thus, state points with the same value of ργ/T have the same scaled structure and
dynamics. These conclusions are verified in simulations.

Slow thermal fluctuations of volume and energy of simulated phospholipid mem-
branes are strongly correlated. The origin of the strong correlation can be traced to
the van der Waals bonded core of the membranes and, thus, have the same origin as
simple strongly correlating liquids.

The last part of the thesis reports crystallization into the MgZn2 Laves phase of
the binary Lennard-Jones mixture suggested by Wahnström [1991]. The crystalliza-
tion mechanism from the supercooled melt is investigated in detail.
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Abstract in danish:

Denne philosophiæ doctor afhandling er ledsaget af tretten artikler. Hoveddelen
er et teoretisk og simulerings studie af en klasse af væsker refereret til som stærkt ko-
rrelerede væsker. Dog er et kapitel dedikeret til et studie af termiske fluktuationer af
simulerede phospholipidmembraner, og et kapitel til et simuleringstudie af krystallis-
ering af en binær blanding. Afhandlingen inkluderer også en kort introduktion til
underafkølede viskøse væsker samt molekyledynamik simuleringer. Det sidste kapitel
omhandler fremtidige undersøgelser. Følgende er konkluderet:

En klasse af modelvæsker udviser ved konstant volumen en stærk korrelation i de
termiske fluktuationer af virial og potentiel energi. Korrelationens ophav er forklaret
for Lennard-Jones væsken. Parenergien kan med god tilnærmelse erstattes med en in-
vers potensfunktion plus et lineært led. Ved konstant volumen er det kun den inverse
potensfunktion som giver bidrag til fluktuationer, og derved forklarer korrelationen.
To størrelser karakteriserer en stærkt korreleret væske: i) En korrelationskoefficient,
R, som bestemmer graden af korrelation og ii) en hældning, γ, som bestemmer pro-
portionaliteten mellem virial og potentiel energi. Hvis korrelationskoefficienten er
tæt på én, er væsken stærkt korrelerende og 3γ er lig med eksponenten af den inverse
potensfunktion.

For viskøse væsker er korrelationskoefficienten lig med den inverse kvadratrod af
en Prigogine-Defay kvotient defineret ud fra tre responsfunktioner. Hældningen kan
også bestemmes ud fra responsfunktioner. Værdier af den klassiske Prigogine-Defay
kvotient fra litteraturen indikerer, at van der Waals væsker i almindelighed er stærkt
korrelerede.

Stærkt korrelerede viskøse væsker er simplere end viskøse væsker i almindelighed:
i) Langsom dynamik er styret af en enkelt relakserende parameter. Derved er de tids-
og frekvensafhængige responsfunktioner for et givet ensemble proportionale. ii) Ska-
leringsinvarians af soft sphere-væsker nedarves gennem den inverse potensfunktion.
Derfor har tilstande med samme værdi af ργ/T den samme skallerede struktur og
dynamik. Simuleringer bekræfter disse konklusioner.

Simulerede phospholipidmembraners langsomme termiske fluktuationer af volu-
men og energi er stærkt korrelerede. Forklaringen på den stærke korrelation skal
findes i den indre van der Waalske del af membranen. Derved er oprindelsen den
samme som for de stærkt korrelerede simple væsker.

Den sidste del af afhandlingen beretter om krystallisering ind i MgZn2 Laves-fasen
af den binære Lennard-Jones blanding foreslået af Wahnström [1991]. Mekanismen
for krystallisering af den underafkølede smelte er undersøgt i detaljer.
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Preface

This is the philosophiæ doctor (Ph.D.) thesis of Ulf Rørbæk Pedersen. The
Ph.D. was initiated February 1st 2006 and the thesis was submitted January
30th 2009, thus lasting the three years of the Danish Ph.D. program.

The thesis have thirteen companion papers (listed below). The purpose of
the thesis is to guide the reader though these papers. The reader will, however,
have to consult the papers to get the full story. Also, parts of the thesis goes
beyond the papers.

Papers

Companion papers are listed below and reprinted in Appendix B.

Paper I: Niels L. Ellegaard, Tage Christensen, Peder Voetmann Christiansen,
Niels Boye Olsen, Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C. Dyre
(2007) Single-order-parameter description of glass-forming liquids: A one-

frequency test. J. Chem. Phys 126, 074502

Paper II: Ulf R. Pedersen, Nicholas P. Bailey, Jeppe C. Dyre, Thomas B.
Schrøder (2007) Crystallization of the Wahnström Binary Lennard-Jones

Liquid. arXiv:0706.0813

Paper III: Ulf R. Pedersen, Nicholas P. Bailey, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Strong pressure-energy correlations in van der Waals liquids.

Phys. Rev. Lett. 100, 015701

Paper IV: Ulf R. Pedersen, Tage Christensen, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Feasibility of a single-parameter description of equilibrium

viscous liquid dynamics. Phys. Rev. E 77, 011201

Paper V: Ulf R. Pedersen, Günther H. Peters, Thomas B. Schrøder, Jeppe
C. Dyre (2008) Volume-energy correlations in the slow degrees of freedom

of computer-simulated phospholipid membranes. AIP Conf. Proc. 982,
407-409

Paper VI: Nicholas P. Bailey, Tage Chistensen, Bo Jakobsen, Kristine Niss,
Niels Boye Olsen, Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C. Dyre
(2008) Glass-forming liquids: one or more ’order’ parameters? Journal
of physics-condensed matter 20, 244113

Paper VII: Thomas B. Schrøder, Ulf R. Pedersen, Jeppe C. Dyre (2008)
Density scaling in a strongly correlating viscous liquid. arXiv:0803.2199
[cond-mat.soft]
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Paper VIII: Nicholas P. Bailey, Ulf R. Pedersen, Nicoletta Gnan, Thomas B.
Schrøder, Jeppe C. Dyre (2008) Pressure-energy correlations in liquids.

I. Results from computer simulations. J. Chem. Phys. 129, 184507

Paper IX: Nicholas P. Bailey, Ulf R. Pedersen, Nicoletta Gnan, Thomas B.
Schrøder, Jeppe C. Dyre (2008) Pressure-energy correlations in liquids.

II. Analysis and consequences. J. Chem. Phys. 129, 184508 (2008)

Paper X: Ulf R. Pedersen, Günther H. Peters, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Computer simulations of phospholipid-membrane thermody-

namic fluctuations. arXiv:0811.3317 [physics.bio-ph]

Paper XI: Søren Toxvaerd, Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Stability of supercooled binary liquid mixtures. arXiv:0811.1117v1
[cond-mat.soft]

Paper XII: Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C. Dyre (2008) Ter-

miske fluktuationer — er der noget nyt under Solen? (in danish) Kvant:
Tidskrift for fysik og astronomi 16(4), 26-29. Dec 2008

Paper XIII: Thomas B. Schrøder, Ulf R. Pedersen, Nicholas Bailey, Søren
Toxværd, Jeppe C. Dyre (2008) Hidden scale invariance in molecular van

der Waals liquids: A simulation study arXiv:0812.4960v1 [cond-mat.soft]

Oral and poster presentations

Results of this thesis have also been presented at the following conferences and
meetings.

Oral presentations:

Copenhagen 2008 Long-lived structural fluctuations and crystallization of

a binary Lennard-Jones mixture. Presented at the international work-
shop Fragility of Viscous Liquids: Cause(s) and Consequences [Carlsberg
Academy, Copenhagen, Denmark, October 8-10, 2008].

Nyborg Strand 2008 Volume-energy correlations in the slow degrees of free-

dom of phospholipid membranes. Presented at the Danish Physical Soci-
ety Annual Meeting [Nyborg Strand Hotel, Denmark, June 17-18, 2008].

Søminestationen 2007 Crystallization of the Wahnström binary Lennard-

Jones liquid. Presented at Viscous Liquids and the Glass Transition VI
[Søminestationen, Holbæk, Denmark, June 29 - July 1, 2007].

Søminestationen 2006 A tumbling model of toluene. Presented at Viscous
Liquids and the Glass Transition V [Søminestationen, Holbæk, Denmark,
May 26-28, 2006].

Poster presentations:

Kyoto 2008 Density scaling as a property of strongly correlating viscous liq-

uids and Long-lived structural fluctuations and crystallization of a binary
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Chapter 1

Introduction

The purpose of this chapter is to give a short introduction to the field of
supercooled viscous liquids (Section 1.1) and molecular dynamics simulations
(Section 1.2). Section 1.3 gives an outline of the remainder of the thesis.

1.1 Supercooled viscous liquids

Imagine we are cooling a liquid as shown in Figure 1.1. Below some temperature
Tm the free energy per particle of the crystal µcry becomes lower than that of
the liquid µliq. According to thermodynamics, the molecules should now form
a crystal to lower the free energy. However, making this experiment, in a
computer or in the laboratory, the crystal might first form below Tm or never.
The liquid is said to be supercooled at T < Tm.

To get insight on supercooling, recall classical nucleation theory in its sim-
plest form [Volmer and Weber, 1926, Becker and Doring, 1935]. Imagine that
for some reason a spherical crystallite had actually formed in the liquid at
T < Tm. Let Nc be the number of particles, rc the radius and ρc = Nc

4

3
πr3

c

the density of the crystallite. The stability of this crystallite is given by the
Gibbs free energy G relative to the liquid. Bulk particles in a crystalline en-
vironment will give a negative volume contribution; Gvol = − 4

3πr3
cρc∆µ where

∆µ = µliq − µcry. However, the solid-liquid surface tension γ∞ will give a
positive surface contribution; Gsurf = 4πr2

cγ∞, thereby destabilizing the crys-
tallite. Surface area scales as r2

c and volume as r3
c , so if the crystallite is big

enough, the negative volume contribution dominates and the crystallite will
grow; ∂

∂rc
∆G < 0 for large rc where ∆G = Gsurf + Gvol. However, at some

critical size the surface contribution and the volume contribution will balance
out. ∂

∂rc
∆G = 0, when

r∗c =
2γ∞
ρc∆µ

and ∆G∗ =
16πγ3

∞
3ρ2

c(∆µ)2
(1.1)

Crystallites smaller than r∗c are unstable. The crystallite leading to crystal-
lization is referred to as the critical nucleus. Remember that ∆µ(Tm) ≡ 0 by
definition, thus, the size r∗c and barrier height ∆G∗ of the critical nucleus is
infinitely large at the melting temperature. Therefore all liquids can be su-
percooled since all crystallites are unstable at Tm. If we wait long enough at
T < Tm a thermal fluctuation will eventually form the critical nucleus and the

1



1. Introduction

Figure 1.1: Volume of Selenium in different phases. At cooling rates of 0.5
degree per minute and 0.005 degree per minute crystallization is avoided. At
these cooling rates, nothing special is observed when passing the melting tem-
perature at Tm = 220 ℃. Note the change of slope at temperature TF1 and
TF2 enlarge on the upper inset. This is a result of a glass transition. The figure
is reprinted from Reference [Dyre, 2006], however, the original figure is from
Reference [Owen, 1985] with data from Dzhalilo and Rzaev [1967].

liquid will find its true equilibrium state. However, in the time of an experi-
ment or simulation this might never occur. Therefore, the liquid is said to be
in a metastable equilibrium since the liquid behaves as if it was in a true equi-
librium. It should be noted that classical nucleation theory is only adequate
close to Tm [Debenedetti, 2006].

Now, consider a liquid where crystallization do not occur. As the thermal
energy is lowered it becomes more difficult for particles to overcome energy
barriers associated with flow events. The liquid becomes highly viscous. If
we disturb the system it will take some time for the liquid to find its new
(metastable) equilibrium state, characterized by a structural relaxation time
τα. At some temperature1, referred to as the glass transition temperature
Tg, τα will become longer than the time-scales of the experiment or computer
simulation. Structure cannot relax, and the liquid falls out of (metastable)
equilibrium. The liquid is now in a so-called glassy state as shown in Figures

1To make Tg well-defined, it is often defined as τα(Tg) = 100 seconds. Here we will
loosely define Tg as the temperature where we cannot bring the system to its (metastable)
equilibrium state.

2



Supercooled viscous liquids

Figure 1.2: Logarithm of viscosity as a function of inverse temperature for
several liquids. A straight line in this plot corresponds to an Arrhenius law,
Equation 1.2. Tg is defined as η(Tg) = 1012 Pa·s. According to the Maxwell
model [see Dyre, 2006], the relaxation time is given by τα = η/G∞. If as-
suming that the instantaneous shear modulus G∞ is constant, then viscosity
is proportional to the relaxation time, τα(T ) ∝ η(T ). Note that some liquids,
like SiO2, follows the Arrhenius law to a good approximation, while others,
like o-terphenyl (OTP), have a significant non-Arrhenius growth of structural
relaxation. See also Figure 1.8. This figure is originally from Reference [An-
gell, 1985] (data of heat-capacity is removed from original figure for clarity)
and reprinted from [Dyre, 2006].

1.1. The solid glass is different from the solid crystal, since the structure is not
ordered, but has inherited the disordered structure of the liquid.

Let us take a look at the temperature dependency of τα. In a situation
where there is only one energy barrier EA, the relaxation time would follow an
Arrhenius law [Debenedetti and Stillinger, 2001]

τα(T ) = τ0 exp

(−EA

kBT

)

. (1.2)

Figure 1.2 shows (a measure of) relaxations times as a function of inverse tem-
perature for a broad collection of liquids. Structural relaxation of some liquids,
like the covalent bonded SiO2, follow this equation to a good approximation.
Presumably, EA is related to breaking bonds needed for flow. Others liquids,

3



1. Introduction

like the van der Waals bonded o-terphenyl (OTP), have a more dramatic in-
crease of τα. Apparently, the energy barriers for this kind of liquids increase
as the liquid is cooled; ∂

∂(1/T )EA(T ) > 0. Many theoretical descriptions even
predict a divergence of EA(T ) at some finite temperature T0. Experimental
data, however, neither confirms nor rejects such a divergence [Hecksher et al.,
2008]. Generally, changing volume V will also influence τα, so we should write
τα(V, T ). Explaining the non-Arrhenius behavior of fragile liquids is one of the
great puzzles of viscous liquids [Dyre, 2006].

Another great puzzle of viscous liquids relates to how various quantities
relax to equilibrium after a disturbance. Let ∆A(t) = A(t)−〈A〉 be the distance
to equilibrium of some observable like internal energy, pressure or volume.
Again, consider a simple situation where the liquid only have to overcome a
single energy barrier to relax. In this scenario relaxation would be exponential,

∆A(t) = A0 exp

(

− t

τα

)

(1.3)

However, virtually no liquids behave this way suggesting some distribution of
energy barriers.

The studies presented in this thesis utilize molecular dynamics simulations
of supercooled viscous liquids. An introduction to this is given in the following
section.

1.2 Molecular dynamics simulations

Computers can make an incredible amount of repetitive calculations. For this
reason, computational methods play an important role in the field of condensed
matter. A popular method is molecular dynamics simulations [ten Wolde and
Frenkel, 1998, Allen and Tildesley, 1987]. To illustrate the basic concept of this
method, imagine that we want to simulate a liquid of Argon atoms. Our first
assumption will be that dynamics can be described using classical mechanics.
Next, we need some model of forces between atoms, referred to as the force-
field. For simplicity we will assume that Argon atoms only interact pairwise
with a force Fij(rij), where rij is the distance between particle i and j. Imagine
we have a box with N particles. We need to consider what to do with the walls
of the box. We could put some repulsive interactions at the walls, however,
then we would be investigating a liquid close to a wall. For a better simulation
of bulk properties we can make use of periodic boundaries as illustrated in
Figure 1.3. The result is that there is no wall, although, due to the limited size
of the system, there can still be finite size effects.

From an initial configuration of positions and velocities we can integrate
the classical equations of motion numerically. A numerical integration consists
of a simple repetitive calculation and is therefore ideal for computers. There
are numerous algorithms for numerical integrations. A crucial choice is the size
of numerical time step, dtstep. A large time-step is be preferable, since we are
interested in long times. The fastest vibrations, however, set an upper limit
for the time step. The longest times of the simulation is determined by the
available computer power and the complexity of the system. At present day, a
system of 1000 particles can be investigated in a time-window of 10−14 seconds
to 10−4 seconds (Figure 1.7).

4



Molecular dynamics simulations

Figure 1.3: Illustration of four particles confined in a box with periodic bound-
aries. Image boxes are displayed with dashed lines.

In a simulation as presented here the number of particles, volume and to-
tal energy are constant. Thus, such a simulation is of the NV E ensemble.
Algorithms2 have been developed to keep temperature and/or pressure con-
stant, making NV T and NpT simulations possible. In long-time simulations a
thermostat is preferable since numerical errors make the total energy drift in
NV E.

Before we can preform an actual simulation we need to specify a force-field.
In the following we will think in terms of pair energy, Uij(r). This is just an
other way of writing the force. It is natural to chose to have zero energy at
rij = ∞ and therefore Uij(r) =

∫∞
r

Fij(r)dr.
Now, let us think of a good expression for Uij(r). Recall that “induced

dipole”-“induced dipole” attraction, known as London dispersion forces, act
between all atoms [Atkins and de Paula, 2002, or a similar standard textbook].
The pair energy associated with this is ULondon

ij ∝ −r−6. Bringing two atoms
close together will result in a repulsion since electron-clouds cannot overlap.
For this we should choose some function with a steep divergence at r = 0.
Traditionally U rep

ij ∝ r−12 is used. Putting this together we obtain the so-
called Lennard-Jones potential [Lennard-Jones, 1931],

ULJ
ij (r) = 4ε

(

(σ

r

)12

−
(σ

r

)6
)

. (1.4)

We will refer to this as the Lennard-Jones liquid. Note that ε defines the
energy scale, σ the length scale and unit of mass is defined by the mass m of
the particles. Dimensionless versions of physical quantities can be defined from
these three. As an example, a dimensionless time can be defined as

t′ = t

√

ε

mσ2
(1.5)

Some good values for Argon are ε = 0.997 kJ/mol, σ = 0.34 nm and m = 39.95
u [van der Spoel et al., 2006]. Using this we have t = t′2.15 ps.

2In the simulations presented in this theses, the Nosé-Hoover thermostat [Nosé, 1984,
Hoover, 1985] and the Nosé-Hoover Langevin barostat [Feller et al., 1995] are used.

5



1. Introduction

Figure 1.4: Pair potentials of two binary Lennard-Jones mixture; the parame-
ter suggested by Wahnström [1991] and Kob and Andersen [1994]. The pa-
rameters for the Wahnström mixture are σBB = 1.2σAA, σAB = 1.1σAA,
εAA = εAB = εBB , mB = 2mA and NA = NB = 512 (χB = 0.5) in a
volume V = (11.094σAA)3. The parameters for the Kob-Andersen mixture are
σBB = 0.88σAA, σAB = 0.80σAA, εBB = 0.5εAA, εAB = 1.5εAA, mA = mB ,
NA = 800, NB = 200 (χB = 0.2) in a volume V = (9.4σAA)3. The Kob-
Andersen mixture is by far the most well-studied.

The Lennard-Jones liquid can easily form a (defected) face center cubic
crystal and it has limited use in the study of supercooled viscous liquids since
crystallization will occur before it becomes viscous. Clarke [1979] did, however,
investigate the glass transition. Crystallization can be avoided by make more
complicated models. It is desirable to keep models as simple as possible, so
they are computationally cheap. The following subsection briefly describes the
models investigated in this thesis.

1.2.1 Simulated systems

Below is a list of models I have simulated. Where nothing else is noted, simula-
tions where preformed using the Gromacs software package [van der Spoel et al.,
2006]. Analysis of the trajectories where done using the Gromacs software pack-
age, home-made Octave scripts [http://www.gnu.org/software/octave/] and
home-made FORTRAN90 code. Pictures of configurations are made using
VMD [Humphrey et al., 1996] assisted with home-made code.

Lennard-Jones liquid: 864 Lennard-Jones particles.

Kob-Andersen binary Lennard-Jones mixture: 800 type A and 200 type
B Lennard-Jones particles. The parameters for the three kinds of pair

6



Molecular dynamics simulations

Figure 1.5: The chemical structure of o-terphenyl (OTP), C6H4(C6H5)2, and a
representation of the model suggested by Lewis and Wahnström [1994] where
circles represent Lennard-Jones particles. The Lennard-Jones parameters are
ε = (600 K)kB , σ = 0.483 nm and m = 76.768 u. The center of the Lennard-
Jones particles are located in the corners of rigid isosceles triangle with two
sides of length σ and one angle of 75°.

Figure 1.6: The potential energy in different phases of the Wahnström binary
Lennard-Jones liquid at χB = 1/3. Note that traditionally the χB = 1/2
composition is simulated (see Figure 1.4). See Chapter 6 and Paper II for
more about the stability of this mixture. Note that the phenomenology is the
same as seen in Figure 1.1 for Selenium. Similar phenomenology is found for
liquids in general.

7



1. Introduction

Figure 1.7: Mean square displacement, 〈(∆r(t))2〉 = 〈(|~r(t) − ~r(0)|)2〉, of A
and B particles of the Kob-Andersen binary Lennard-Jones mixture. At ultra
short times particles have not “felt” each other, and displacements are ballistic,
〈(∆r(t))2〉 = (vmt)2 where vm is the root mean square velocity. At long-times
displacements become diffusive, 〈(∆r(t))2〉 = 6Dt, where D is the diffusion
constant. At low temperatures, T < 0.5, particles become “caged” in the
intermediate region.
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Molecular dynamics simulations

Figure 1.8: Reduced inverse diffusion constant (D∗)−1 =
D−1(N/V )−1/3(kBT/m)1/2 as a function of inverse temperature in a
simulation of the Lewis-Wahnström model of OTP. (D∗)−1 relates to some
characteristic “diffusion” time. A straight line in this plot corresponds to an
Arrhenius law, Equation 1.2. Note that at high temperature (D∗)−1 follows
an Arrhenius law, but not at lower temperature. A non-Arrhenius behavior at
low temperature is also found for experimental data of OTP (see o-terphenyl
(OTP) in Figure 1.2).

energies, ULJ
AA(r), ULJ

BB(r), ULJ
AB(r), are σBB = 0.88σAA, σAB = 0.80σAA,

εBB = 0.5εAA, εAB = 1.5εAA. The pair potentials are shown in Figure
1.4. This model was suggested by Kob and Andersen [1994] and is one
of the most well-studied model viscous liquids.

Wahnström binary Lennard-Jones mixture: 500 type A and 500 type B
Lennard-Jones particles with the interaction parameters σBB = 1.2σAA,
σAB = 1.1σAA, εAA = εAB = εBB and masses mB = 2mA. The pair
potentials are shown in Figure 1.4. This model was suggested by Wahn-
ström [1991].

Lewis-Wahnström OTP model: Lewis and Wahnström [1994] suggested to
connect three identical Lennard-Jones particles with rigid bonds as a toy
model of o-terphenyl (OTP). The LINCS algorithm [Hess et al., 1997] is
used for making rigid bonds (in all the models). See Figure 1.5 for more
details about this model.

Asymmetric dumbbells: A system of asymmetric dumbbells as a toy model
of toluene, where a phenyl-group, C6H5-, and the methyl-group, -CH3

9



1. Introduction

where represented as Lennard-Jones particles.

Seven-site model of toluene: A model of toluene, C6H5CH3, were CHx

groups (were x is either 0, 1, or 3) are simulated as Lennard-Jones parti-
cles connected by rigid bonds. The UA-OPLS parameter set [Jorgensen
et al., 1984] where used for bond lengths and interaction parameters.

SPC/E water: Three-site model of water suggested by Berendsen et al. [1987].

GROMOS methanol: Three-site model of methanol, CH3OH, where CH3,
O and H are simulated as charged Lennard-Jones spheres. The GROMOS
parameter set [van Gunsteren et al., 1996] was used for bond lengths and
interaction parameters.

Phospholipid membranes: Seven phospholid membranes where simulated
using a modified version of the all-atom CHARMM27 [Foloppe and MacK-
erell, 2000] parameter set. See Chapter 5, References [Pedersen, 2005,
Pedersen et al., 2006, 2007, Sonne et al., 2007], and/or Paper X for more
details. As a part of my master thesis [Pedersen, 2005] I simulated one
of these membranes, however, the simulations presented in this thesis are
conducted by Günther H. Peters (using the NAMD2 program [Kale et al.,
1999]).

Model liquids shows the same phenomenology as real liquids. Figures 1.6 to
1.7 exemplifies this. Figure 1.6 shows the potential energy in different phases
of the Wahnström binary Lennard-Jones mixture. At the investigated cooling
rates of the liquid, crystallization is avoided and a glass transition is observed.
Recall that this is the same phenomenology as shown in Figure 1.1.

Figure 1.7 shows the root mean square displacement 〈(∆r(t))2〉 = 〈(|~r(t)−
~r(0)|)2〉 of particles of the Kob-Andersen Lennard-Jones liquid. At short times
displacements are ballistic and at long times they are diffusive. From this last
part of the curve, the diffusion constant D can be determined, 〈(∆r(t))2〉 =
6Dt. At low temperatures an intermediate plateau appears, where particles do
not move. At T = 0.366 particles are “caged” from 10−12 to 10−7 seconds (in
Argon units).

Figure 1.8 shows the diffusion constant of molecules of the Lewis-Wahnström
OTP model at different temperatures. At high-temperatures, the diffusion
constant follows an Arrhenius law. However, at low-temperatures, diffusion is
clearly non-Arrhenius. This is in good agreement of what is observed for real
OTP as seen in Figure 1.2 (labeled o-terphenyl).

1.3 Outline of thesis

In Chapter 2 it is shown that some model liquids exhibit strong correlations
in the thermal fluctuations of configurational parts of pressure and energy in
the NV T ensemble. Such liquids are referred to as strongly correlating liquids.
Chapter 3 explains the origin of the strong correlation. In Chapter 4 it is
argued, on the basis of the previous chapters, that strong correlating viscous

liquids are more simple than viscous liquids in general. This is exemplified by
the so-called Progogine-Defay ratio being close to unity (Section 4.1), and scale
invariance of structure and dynamics (Section 4.2).
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Outline of thesis

Thermodynamic fluctuations of phospholipid membranes also exhibit strong
correlations. These correlations are reported and explained in Chapter 5.

Chapter 6 reports and investigates crystallization from the melt of some
of the investigated models. Before the presented study, these models had not
been reported to crystallize from the melt. Crystallization of the Wahnström
binary Lennard-Jones liquid is investigated in details.

The final chapter is an outlook.
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Chapter 2

Strongly correlating liquids

Consider a system of N particles in a fixed volume V . Total energy E is a
sum of a kinetic part (kinetic energy) that is only a function of the momenta,
~Q = {~q1, ~q2, . . . , ~qN}, and a configurational part (potential energy) that is only
a function of positions, ~R = {~r1, ~r2, . . . , ~rN};

E( ~Q, ~R) = K( ~Q) + U(~R). (2.1)

In the same way, pressure p is a sum of a kinetic and a configurational part,

p( ~Q, ~R) = NkBT ( ~Q)/V + W (~R)/V, (2.2)

where T ( ~Q) is the instantaneous temperature. W/V and U are the configu-
rational part of pressure and energy respectively. Note that W is in units of
energy. If thermal fluctuations of W and U are strongly correlated in time,
this is referred to as a strongly correlated liquid. The remainder of this chapter
discuss such W -U correlations in model liquids and super critical Argon. The
main references for this chapter are Paper III and Paper VIII.

2.1 An example: The Lennard-Jones Liquid

Probably the most well-studied model liquid is the (single component) Lennard-
Jones liquid, where particles interact pairwise via the Lennard-Jones potential
[Lennard-Jones, 1931]:

ULJ
ij = 4ε

(

(

σ

rij

)12

−
(

σ

rij

)6
)

, (2.3)

where rij is the distance between particle i and j (see also Section 1.2). The
virial of a system of pairwise interactions particles is

W =
1

3

∑

i 6=j

rijFij =
∑

i 6=j

Wij (2.4)

where Fij = − d
dr Uij is the force between particle i and j. It is convenient to

define a pair virial as

Wij = −rij

3

d

dr
Uij . (2.5)
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2. Strongly correlating liquids

Figure 2.1: Instantaneous normalized fluctuations of virial and potential en-
ergy in a single component Lennard-Jones liquid. W (t) and U(t) are strongly
correlated. This figure is the same as Figure 1A in Paper III, but for another
simulation.

For the Lennard-Jones potential this is

WLJ
ij = 8ε

(

2

(

σ

rij

)12

−
(

σ

rij

)6
)

. (2.6)

Figure 2.1 shows a time series of normalized fluctuations (with respect to
the standard deviation σ) of virial W (t) and potential energy U(t) in a constant
NV T simulation at T =0.66 (T = 80 K in Argon units) and ρ = 0.840 (〈p〉 = 0).
Virial and potential energy are strongly correlated. This is quantified by the
correlation coefficient,

RWU ≡ 〈∆W∆U〉
√

〈(∆W )2〉〈(∆U)2〉
= 0.953, (2.7)

being close to unity.
Figure 2.2 shows a scatter plot of virial versus potential energy for some

more state points. The cigar-form of the scatter-blobs for a given state-point
indicates a strong correlation. Note also the constant density path’s. The slope
of these paths is around 6 (±10%) and the same value as the “slope” of a single
state point defined as

γWU ≡
√

〈(∆W )2〉
〈(∆U)2〉 (2.8)

When pressure is held constant (and not volume), the correlation is weaker.
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A class of strongly correlating liquids

Figure 2.2: Scatter plot of virial and potential energy in a single component
Lennard-Jones liquid at different state points. Simulations where done in the
NV T ensemble. The lower panels show the W -U correlation coefficient RWU

(Equation 2.7), the W -U slope (Equation 2.8) and the average pressure.
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2. Strongly correlating liquids

Figure 2.3: W -U correlation plot of model liquids. The numerator plotted
against the denominator of the correlation coefficient expressed in units of
pressure (making them intensive quantities). The diagonal (dashed line) cor-
respond to perfect correlation. Models of van der Waals bonded liquid are
close to this line showing strong W -U correlations, whereas hydrogen bonded
liquids only have weak or no correlation. The simulated systems are the single
component Lennard-Jones liquids (SCLJ), a model with exponential repulsion
therm (EXP), a asymmetric dumbbell model (DB), model of Toluene using the
UA-OPLS parameters (TOL) [Jorgensen et al., 1984], a model of pure Cu with
a many body potential (CU) [Jacobsen et al., 1987, 1996], a binary mixture
of particles with hard-core repulsion and a square-well attraction (SQW) [Za-
ccarelli et al., 2002, 2004], a binary Lennard-Jones mixture suggested by Kob
and Andersen [1994, 1995a] (KABLJ), a ortho-terphenyl model suggested by
Lewis and Wahnström [1994] (OTP), a single component glass former suggested
by Dzugutov [1992], a model of methanol using the GROMOS parameters [van
Gunsteren et al., 1996], a three-site model of water (SPC/E) [Berendsen et al.,
1987], a model of Mg85Cu15 [Bailey et al., 2004] and a five-site model of wa-
ter (TIP5P) [Mahoney and Jorgensen, 2000]. Simulations of SCLJ and EXP
where conducted by Thomas B. Schrøder. Simulations of CU, DZ and MGCU
where conducted by Nicholas P. Bailey. Simulations of SQW and TIP5P where
conducted by Nicolette Gnan. The remaining simulations where conducted by
the author, see Section 1.2.1. This figure is the same as Figure 10 in Paper
VIII, where simulation details are also given.
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A class of strongly correlating liquids

2.2 A class of strongly correlating liquids

If strong W -U correlations were only present in the Lennard-Jones liquid, they
would not be so interesting. However, other liquids also exhibit strong W -
U correlations. Figure 2.3 show the nominator, 〈∆W∆U〉/(kBTV ), versus
the denominator,

√

〈(∆W )2〉〈(∆U)2〉/(kBTV ), of the correlation coefficient,
in units of pressure to make them intensive quantities, of 13 liquids. In this
plot, the diagonal correspond to perfect correlation.

A large group of liquids are strongly correlating. This suggest that there
exist a class of strongly correlating liquids (see Sections 3.1, 4.1.3 and 4.2 for
more about this conjecture). Note that van der Waals bonded liquids belongs to
this class, whereas hydrogen bonded liquids only have weak correlations. The
weakening of correlation can be explained by competing interactions. Close to
the density maximum of water W and U are uncorrelated, RWU = 0. For more
about this, see section C in Paper VIII.

2.3 Supercritical Argon

An experimental correlation coefficient of super-critical argon can be calcu-
lated1: Recall, that for particles with no internal degrees of freedom kinetic
parts of pressure and energy is simply that of a mono-atomic ideal gas and
that the fluctuation-dissipation theorem relates fluctuations to response func-
tions [Allen and Tildesley, 1987]; For a mono-atomic system we can write

〈(∆U)2〉/kBT 2 = CV − 3

2
NkB , (2.9)

〈(∆W )2〉/kBT = NkBT + 〈W 〉 − V KT + 〈X〉 (2.10)

and
〈∆U∆W 〉/kBT 2 = V βV − NkB . (2.11)

Note, that the so-called “hyper-virial” X [Allen and Tildesley, 1987] goes into
the relation between 〈(∆W )2〉 and KT (Eq. 2.10). X is not a thermodynamic
quantity and cannot be measured.

Fortunately, it is possible to subtract X out of the equations (with some
assumptions), as described in Paper VIII section IIIA. If Tref is the temperature
at some reference state-point (along a constant density path) cconf

V = cV −
3
2NkBT , βconf

V = βV − NkB/V and 〈p〉conf = 〈p〉 − NkBT
V then the correlation

coefficient is given by

RWU ≃
√

B(T ) − B(Tref )

A(T ) − A(Tref )
(2.12)

where

A(T ) = 〈p〉 − KT +
〈p〉confβconf

V

cconf
V

, (2.13)

1There are two reasons for choosing Argon. 1st: A calculations on lighter noble gasses like
Helium should include quantum effects. Here we ignore such quantum effects. 2nd: Heavier
noble gasses is known to form compounds indicating that the Lennard-Jones potential is to
simple (loosely speaking: the large electron cloud of the heavy noble gasses can make covalent
bonds).
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2. Strongly correlating liquids

and
B(T ) = T (βconf

V )2/cconf
V . (2.14)

Figure 9 in Paper VIII shows experimental data from the NIST database
[Lemmon et al., 2005] of super critical Argon where the diagonal corresponds to
perfect correlation. The correlation is strong with a W -U correlation coefficient
of 0.96. This show that strongly correlating liquids exist in nature and not
just the computer. Equation 2.12 also demonstrate that strongly correlating
liquids are more simple than the general case. If we assume R = 1, a good
approximation for strongly correlating liquids, we can predict a third response
function from two others. This is not the general case.

18



Chapter 3

Origin of strong correlations

In this chapter it is shown that the origin of the strong correlation between
virial and energy (in the constant volume ensamble) is a consequence of an
effective inverse power-law of the pair-potential. This power-law describes the
thermodynamical fluctuations of the NVT ensamble. See also Paper III, Paper
VIII and Paper IX. The real pair potential cannot simply be approximated by
an inverse power. This would give a wrong equation of state. However, a good
approximation is an inverse power-law plus a linear term. The linear term does
not contribute (significantly) to fluctuations at fixed volume.

3.1 Effective inverse power-law pair potential

First, consider a soft-sphere liquid [Hoover et al., 1970], where particles interact
via an inverse power-law potential:

Upow
ij = ar−n

ij , (3.1)

where n is some exponent and a is a prefactor. As shown in Appendix A.1,
potential energy and virial are proportional

W pow(t) = γpow
WUUpow(t), (3.2)

with a proportional constant (or slope) of

γpow
WU = n/3. (3.3)

Then, recall that the Lennard-Jones potential is a sum of two inverse power-
laws, where r−12 dominate as short distances. A possible explanation for the
correlations could be that the r−12 term dominate fluctuations. However, this
would give a slope of four, whereas the observed slope is around six. The reason
for this is that particles are located close to the minimum, where both r−12 and
r−6 terms play a role (Paper III, [Ben-Amotz and Stell, 2003]). Note, however,
that the slope in Figure 2.2 does approach four with increasing pressure (where
r−12 dominates).

Fluctuations of virial and potential energy (at constant volume) can be
described by an effective inverse power-law with an exponent larger than 12.
To show this, split the pair energy in an inverse power-law term plus a difference
term,

ULJ = Upow + Udiff. (3.4)
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3. Origin of strong correlations

Figure 3.1: Effective inverse power-law Upow
ij = 4

3r−18− 4
3 derived in Appendix

A.2. See also Figure 3.5. The definition of the radial distribution function g(r)
is given in Section 3.2.

and
WLJ = W pow + W diff. (3.5)

Then the variance of energy and virial can be written as

〈(∆ULJ)2〉 = 〈(∆Upow)2〉 + 〈(∆Udiff)2〉 + 2〈∆Upow∆Udiff〉, (3.6)

and

〈(∆WLJ)2〉 = 〈(∆W pow)2〉 + 〈(∆W diff)2〉 + 2〈∆W pow∆W diff〉. (3.7)

If an effective inverse power-law gives a good description of the fluctuations
then

∆ULJ(t) ≃ ∆Upow(t) (3.8)

and
∆WLJ(t) ≃ ∆W pow(t). (3.9)

To quantify “≃” in the above equations, we can investigate the pow-LJ corre-
lation coefficients

RUpow,ULJ ≡ 〈∆ULJ∆Upow〉
√

〈(∆ULJ)2〉〈(∆Upow)2〉
, (3.10)
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Effective inverse power-law pair potential

Figure 3.2: The panel on the left shows a scatter plot of ∆Upow versus
∆ULJ (Equation 3.4) and the panel on the right shows ∆W pow versus ∆WLJ

(Equation 3.5) of configurations of the Lennard-Jones liquid at T = 0.66 and
ρ = 0.840 (〈p〉 = 0). The effective inverse power-law describes fluctuations of
virial and energy to a good approximation (Equations 3.8 and 3.9).

and

RWpow,WLJ ≡ 〈∆WLJ∆W pow〉
√

〈(∆WLJ)2〉〈(∆W pow)2〉
(3.11)

and the amount of variance described by the effective power-law,

γ2
Upow,ULJ ≡ 〈(∆Upow)2〉

〈(∆ULJ)2〉 , (3.12)

and

γ2
Wpow,WLJ ≡ 〈(∆W pow)2〉

〈(∆WLJ)2〉 . (3.13)

If the description is good, all of these should be close to unity.
As a first guess, we will assume that n = 18 (γ = 6) (as the W -U slope on

Figure 2.1 suggest), and get a pre-factor a by fitting the inverse-power law to the
Lennard-Jones potential by matching 0th, 1st and 2nd derivative as described
in Appendix A.2. This give the inverse power-law Upow

ij = 4
3 (rij/σ)−18 shown

on Figure 3.1. Figure 3.2 shows that this effective inverse power-law gives a
pretty good description of the fluctuations.

In the following, a way to determine the best1 n and a from fluctuations at
one state-point will be given. Figure 3.3 shows Eqs. 3.10–3.13 as a function
of n. In some range (±10%) the power-law energy and virial are strongly
correlated with the Lennard-Jones (RUpow,ULJ > 0.93 and RWpow,WLJ > 0.96)
and dominates the fluctuations (〈(∆ULJ)2〉 ≃ 〈(∆Upow)2〉 > 〈(∆Udiff)2〉 ≃
|〈∆Upow∆Udiff〉|). Both virial and energy fluctuations should be described

1best: Effective inverse power-law that gives the best description of the fluctuating parts
of energy and virial.
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3. Origin of strong correlations

Figure 3.3: Eqs. 3.10 to 3.13 as a function of n (using afit) of the Lennard-
Jones liquids at T = 0.66 and ρ = 0.840. The optimization parameter
√

RUpow,ULJRWpow,WLJ have maximum, close to n = 18.9 = 3
√

〈(∆W )2〉
〈(∆U)2〉 .

However, note that
√

RUpow,ULJRWpow,WLJ is close to unity in the entire
investigated region. This suggest that a n not exactly 19.8 works pretty
well. Also, note that covariances 〈∆Upow∆Udiff〉/〈(∆Udiff)2〉 = 0.02 and
〈∆W pow∆W diff〉/〈(∆W diff)2〉 = 0.06 are small at exponent n = 18.9.

by the effective inverse power-law (both RUpow,ULJ and RWpow,WLJ close to
unity). Thus,

√

RUpow,ULJRWpow,WLJ should be close to unity. Note that this
optimization parameter have a maximum close to the exponent calculated from
the W - U slope (n = 3γWU = 18.9). Thus, the apparent exponent can simply
be calculated as

n = 3

√

〈(∆W )2〉
〈(∆U)2〉 = 3γWU (3.14)

The prefactor a can also be determined from the W and U fluctuations.
The afit calculated in Appendix A.2 worked pretty well, however, a slight in-
crease give a better fit. Figure 3.4 shows that an 8.8% increase gives the best
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Effective inverse power-law pair potential

Figure 3.4: Eqs. 3.10 to 3.13 as a function of a/afit (n = 18.9) of the Lennard-
Jones liquids at T = 0.66 and ρ = 0.840. T = 80 K and 〈p〉 = 0. At
aopt = 1.088afit = 1.389 (dashed line) the variance of ∆ULJ(t) equals that
of ∆ULJ(t) and the variance of ∆WLJ(t) equals that of ∆WLJ(t). Also, at
aopt the variance of ∆Udiff(t) and ∆W diff(t) and the correlation coefficient
RULJ,Udiff and RWLJ,Wdiff are small.

description. It is possible to match (the magnitude of) both the potential en-
ergy and the virial, 〈(∆Upow)2〉/〈(∆ULJ)2〉 ≃ 〈(∆W pow)2〉/〈(∆WLJ)2〉 ≃ 1.
Note that changing a do not effect the correlation coefficients RUpow,ULJ and
RWpow,WLJ .

Figure 3.5 show Upow
ij with exponent n = 18.9 and aopt = 1.088afit = 1.389.

Note that Udiff
ij of this effective inverse power-law is well approximated by a

straight line in the range of the first peak of the radial distribution function,
g(r). This will be discussed further in the next section.

So far it is only demonstrated that the effective power-law works for the
6-12 Lennard-Jones liquid. However, in Paper XIII it is argued that a similar
fitting can be done for the assymetric dumbell model. Coslovich and Roland
[2009] have recently shown that the description also works for the generalized
Lennard-Jones potential, Ugen.LJ

ij = (nr−m − mr−n)/(m − n). It is reasonable
that a similar inverse power-law matching can be done in similar systems.
Therefore, a good conjecture is that the effective power-law explanation works
for van der Waals bonded systems in general. More work is needed to clarify
this.

Note that the Lennard-Jones potential cannot simply be replaced by an
inverse power-law – only fluctuations (at fixed volume) can be described by a
inverse power-law. The Lennard-Jones liquid does not have the same equation
of states as the soft-sphere liquid. In the next section will discuss the role of

23



3. Origin of strong correlations

Figure 3.5: The optimal effective inverse power-law of Upow
ij = 1.389r−18.9 −

1.388 of the Lennard-Jones liquid at the state-point T = 0.66 and ρ = 0.840.
n = 18.9 and a = 1.389 are calculated from fluctuations as outline in Figure
3.3 and Figure 3.4. The definition of the radial distribution function g(r) is
given in Section 3.2.

Udiff.

3.2 Approximate inverse power-law plus linear term

pair potential

The effective inverse power-law gives a good description of the pair potential
at short distances, r < rmin(= 1.12σ), but not at longer distances, as shown
on Figure 3.1. At first glance, it is surprising that the effective power-law does
so well after all. Even at zero pressure where particles are located close to the
minimum of the Lennard-Jones potential. In the following, it will be discussed
why Udiff does not contribute to the fluctuations at fixed volume. The whole
system, and not just a single pair, has to be taken into account. See also Paper
IX section II-D.

Define the instantaneous pair distribution function (or radial distribution
function) as2

g(r, t) =
1

2Nρ

∑

i 6=j

δ(r − rij(t)) (3.15)

2δ(x) is Dirac delta function.
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Low temperature limit of crystal

where
g(r) = 〈g(r, t)〉 (3.16)

is the traditional pair distribution function [Allen and Tildesley, 1987]. From
g(r, t) we can calculate the potential energy at time t as

U(t) = (4πρN/2)

∫ ∞

0

Uij(r)g(r, t)r2dr, (3.17)

and

∆U(t) = (4πρN/2)

∫ ∞

0

Uij(r)∆g(r, t)r2dr, (3.18)

where
∆g(r, t) = g(r, t) − g(r). (3.19)

Udiff, shown on Figure 3.1, can be approximated with a linear function in
the first shell regime (first peak of g(r)). The same goes for W diff. The fact
that Udiff is nearly constant, ∆Udiff(t) ≃ 0, suggests that

4πρN/2

∫

first shell

rij∆g(r, t)r2dr ≃ 0 (3.20)

or
∫

first shell

rij∆ρb(r, t)r
2dr ≃ 0 (3.21)

where ρb(r, t) = (4πρN/2)∆g(r, t) is the bond density. In other words the
number of bonds in first shell is constant, and the average first shell bond
distance rm(t) =

∫

first shell
rρb(r, t)dr is constant. This is reasonable for a dense

liquid in a fixed volume. Whenever a particle moves it will come closer to some
particles and move further away from others – approximately without affecting
rm(t).

If volume is changed we expect an overall change of the bond density, and
Udiff will change. This is why the W −U scatter plot on Figure 2.2 has constant
density paths,

W = γWU (U + U0(ρ)) (3.22)

Here, the argumentation of rm being constant is somewhat imprecise. It
is intuitively reasonable, but the “first shell” integral,

∫

first shell
. . . dr, is not

well-defined. The following section discuss a one dimensional crystal where a
clear argumentat can be made. Note, however, that the reasoning is of the
same nature.

3.3 Low temperature limit of crystal

The correlation survives all the way down to the zero temperature limit of
the crystal – even at negative pressure (Figure 4 in Paper IX). This low-
temperature limit can be explained by approximating the pair potential by
a Taylor expansion. In the following we will investigate W -U correlations of a
one-dimensional crystal.

Think of a one-dimensional crystal with only nearest neighbor interactions
(see also Paper IX section II-B-1). Let N be the number of particles in box of
length (or “volume”) L. Make the box periodic so particle N + k is a mirror

25



3. Origin of strong correlations

of particle k. The average pair distance will then be a = L/N . For simplic-
ity put a at the minimum of the potential, U ′

ij(a = rm) = 0, and shift the
minimum to zero, Uij(rm) = 0. In the low temperature limit we can make a
Taylor expansion of the pair potential, keeping up to the third order in relative
displacement. Define

Sp ≡
N
∑

i

(ri,i+1 − rm)p, (3.23)

and write energy as (the third order term of energy is explicitly written here,
since it goes into the second order term of virial)

U =
1

2
k2S2 +

1

6
k3S3 + O(S4), (3.24)

and virial as (see Paper IX for details)

W = −1

3
(k2rmS1 + (k2 +

1

2
k3rm)S2) + O(S3), (3.25)

where kp is the p’th derivative of the pair potential at rm.
The lowest order term of the energy is second order S2. To second order, W

involves both S1 and S2, so apparently there is no W–U correlation. However,
S1 vanishes when volume is fixed: Fixed volume implies that

∑N
i ri,i+1 =

Nrm = L, and S1 =
∑N

i (ri,i+1 − rm) =
∑N

i ri,i+1 − Nrm = 0.
Combining Equations 3.24 and 3.25 (with S1 = 0 and throwing away O(S3))

we recover a W–U correlation,

W = −1

3

k2 + 1
2k3rm

1
2k2

U. (3.26)

For the Lennard-Jones potential (with rm = 21/6σ) the slope is − 1
3

k2+
1

2
k3rm

1

2
k2

=

6.33. This is in good agreement with slope found in simulations (see Figure
2.2)3.

The three dimensional crystal is more complicated (see Paper IX section
II-B-2 and II-B-3). Here, the correlation is not exact but the energy-virial
correlation is close to unity (Figure in Paper IX) and slope is close to observed
six.

Again, note the importance of fixed volume. In the one dimensional crystal
the situation is more clear than the effective inverse power-law explanation (and
the three dimensional crystal), but are of the same nature. When one bond
gets shorter an other must get longer. The volume constrain makes linear terms
vanish. That is S1 = 0 or

∫

first peak
r∆ρb(r, t)dr ≃ 0.

3.4 Weeks-Chandler-Andersen

The reader has perhaps noticed the similarities between the apparent inverse
power-law and the celebrated 1971 paper by Andersen, Weeks, and Chandler
[1971] (WCA). These authors argue that molecules of a liquid can be thought

3Traditionally, we think of the low-temperature limit of the crystal as harmonic. However,
for the harmonic crystal (k3 = 0) the slope is −2/3 and not close to six.
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Weeks-Chandler-Andersen

of as hard-core particles (Uhs
ij (r) = ∞ for r < rd and Uhs

ij (r) = 0 elsewhere)
with attraction that can be viewed as a perturbation.

The effective inverse power-law plus a linear term agrees with the WCA
interpretation, that the repulsive region of the pair potential dominates liq-
uid structure – an important result of WCA-paper. However, in the following
chapter it will be demonstrated that an inverse power-law is more useful than
a hard-core description. (One can think of a hard-core interactions as a ap-
proximation to the effective inverse power-law.)
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Chapter 4

Strongly correlating viscous liquids

In this chapter it is demonstrated that strongly correlating viscous liquids are
more simple than viscous liquids in general.

In the first section, it is argued that the glass-transition of strongly cor-
relating viscous liquids is single-parameter in the Prigogine-Defay sense. The
references for this section are Paper I, Paper IV, Paper VI and Paper IX. In ad-
dition, the section give some simple equations to illustrate possible scenarios of
thermodynamic fluctuations and a rethinking of the (classical) Prigogine-Defay
ratio Πclassic.

In the second section it is shown that strongly correlating viscous liquids
have a scale invariant energy landscape. This provides a scaling-law of dynam-
ics (exemplified by the diffusion constant D) and structure (exemplified by the
radial distribution function g(r)). The references for this section are Paper VII
and Paper XIII.

4.1 A single order-parameter of viscous liquids

The classical picture of a single order-parameter description of the glass transi-
tion was developed by Davies and Jones [1953a,b]. In these authors’ picture, an
important number is the so-called Prigogine-Defay ratio [Prigogine and Defay,
1954]. This ratio is calculated from the change of the (static) response function
at the glass-transition. If ∆cp = cliquid

p −cglass
p is the change of the isobaric heat

capacity per unit volume, ∆κT = κliquid
T − κglass

T is the change of isothermal
compressibility and ∆αp = αliquid

p − αglass
p is the change of isobaric expansion

coefficient, then the classical Prigogine-Defay ration is defined as1

Πclassic
pT =

∆cp∆κT

Tg(∆αp)2
. (4.1)

In general Πclassic
pT ≥ 1 and Πclassic

pT = 1 in the single parameter case. Since
then, the topic has been debated in the glass community2. Moynihan et al.

1The superscript “classic” in equation 4.1 is normally not used, but is used here distinguish
it from the later defined Progogine-Defay ratios. The subscript pT is to emphasize that this
ratio relates the natural response functions of the NpT ensemble - the ensemble preferred in
an experimental situation. That is cp, κT and αp.

2See References [Davies and Jones, 1953a,b, DiMarzio, 1974, Goldstein, 1975, Gupta and
Moynihan, 1976, Moynihan et al., 1976, Roe, 1977, Moynihan and Gupta, 1978, Lesikar and
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4. Strongly correlating viscous liquids

[1976] concluded, on the basis of available experimental data, that the ratio
typically takes values of 2 < Πclassic

pT < 4. The conclusion from this is therefore
that in general more than one order-parameter is needed. A collection of ratios
available today are compiled in Table 4.1. Note that some Prigogine-Defay
ratios are infact close to unity. Table 4.1 is discussed in details in Section 4.1.3.

At this point, I have not explained to the reader what exactly is meant by “a
single-order parameter”. The reason for this is that Roe [1977], Moynihan and
Gupta [1978], Moynihan and Lesikar [1981] realized that the classical Prigogine-
Defay ratio is not well-defined. Theoretical predictions solely based on Πclassic

pT

are therefore problematic. The solution to this was a (well-defined) revised
Prigogine-Defay ratio. This ratio relates to the frequency dependent response
functions of the equilibrium liquid (disregarding the crystal) and is defined as

Πlinear
pT =

[cp(ω → 0) − cp(ω → ∞)][κT (ω → 0) − κT (ω → ∞)]

T [αp(ω → 0) − αp(ω → ∞)]2
(4.2)

where ω → ∞ refers to high-, and ω → 0 to the low frequency limit. Unfor-
tunately, it is difficult to get good measurements of wide frequency spectra, as
needed to get these limits. For this reason no-one has attempted to calculate
Πlinear

pT from experimental data (to the author’s knowledge). However, in sim-
ulation this can be done as demonstrated by Nielsen [1999] and in Figure 4.3.
Ellegaard [2005] showed that Πlinear

pT can be re-expressed as a single-frequency
quantity ΛpT (ω) (see following section), more suited for experiments. This is
published in Paper I.

The remainder of this chapter is a newly developed interpretation of “single
parameter”-ness, based on ΛpT (ω). In this interpretation, it is clear what is
meant by “a single parameter”. In the classical understanding it is somewhat
unclear what can be learned from a ratio close to unity but not exactly unity.
In other words: What should a measured value of Πclasic

pT be compared to? Is
Π = 1.2 “significantly larger than unity” as concluded by Takahara et al. [1999]?
It will become clear how we should interpret Πclasic

pT > 1 (Subsection 4.1.3).

4.1.1 Dynamic Prigogine-Defay ratio, Λ(ω)

The dynamic Prigogine-Defay ratio ΛpT (ω) is an one-frequency test quantity
for single parameter-ness. This was published in Paper I, based on the Ph.D.
thesis of Ellegaard [2005]. It is defined from the frequency-dependent response
functions. If cp(ω)′′, κ′′

T (ω) and α′′
p(ω) are the imaginary parts (at a single

frequency) of isobaric heat capacity per unit volume, isothermal compressibility
and isobaric expansion coefficient respectively, then

ΛpT (ω) ≡
c′′p(ω)κ′′

T (ω)

T [α′′
p(ω)]2

. (4.3)

It is in principle accessible though experiments, although it has not been mea-
sured yet. It is not at all trivial to measure frequency dependent response
functions. As an example, a resent paper by Christensen et al. [2007] shows
that conventional methods to measure frequency-dependent isobaric heat ca-
pacity cp(ω) fail.

Moynihan, 1980, Moynihan and Lesikar, 1981, Nieuwenhuizen, 1997, 2000, Ellegaard, 2005,
Schmelzer and Gutzow, 2006, Pick, 2008] and Paper VI.
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A single order-parameter of viscous liquids

Table 4.1: Litterateur values of classical Prigogine-Defay ratios.

Material ΠpT Π
−1/2
pT Ref.

Pure SiO2 glass 103-2·105 0.03-0.002 a
Glycerol, C3H5(OH)3 9.4 0.33 b
Rubber 8.3 0.33 a
GeO2 6.9±1.3 0.38±0.04 h
16Na2O–10B2O3–74SiO2 4.9 0.45 f
B2O3 4.7 0.46 c/b
0.4Ca·NO3·0.6KNO3 4.5 0.47 c/b
Glucose, OC6H7(OH)6 3.7 0.52 a
16Na2O–10CaO–74SiO2 3.6 0.53 f
Se 2.4 0.65 a/b
Se 2.0 0.71 j
ZrTiCuNiBe 2.4 0.65 e
26Na2O–74SiO2 2.3 0.66 f
Technical glasses 2.0-2.7 0.71-0.61 a
Polyvinylacetate 2.2(1.7) 0.67(0.77) c/b
n-Propanol, C3H7OH 1.9 0.73 b
Polyvinylchlorid, PVC 1.7 0.77 b
Polystyrene, PS 1.3±0.1 (16) 0.88±0.03 (0.25) d
OTP(75%)-TPCM(25%) 1.28 0.88 k
OTP(67%)-OPP(33%) 1.20±0.05 0.92±0.02 d
Polystyrene, PS 1.085 0.96 l
Phenoxy 1.03 0.99 g
Polycarbonate 1.02 0.99 g
Polysulfone 0.96 1.02 g
Polyarylate 0.90 1.05 g
Polyisobutene 0.9 1.05 b

Liquids are listed with decreasing classical Prigogine-Defay ratio. As discussed
in details in Section 4.1.3 this separates van der Waals bonded liquids, with
ratios close to unity, from the rest. References. a: [Nemilov, 1994]; b:
[Donth, 1981]; c: [Gupta and Moynihan, 1976]; d: [Takahara et al., 1999]; e:
[Samwer et al., 1999]; f: [Wondraczek and Behrens, 2007]; g: [Zoller, 1982];
h: [Dingwell et al., 1993]; i: [Hadac et al., 2007]; j: [Berg and Cooper, 1978];
k: Calculated by Ellegaard [2005] using data from Naoki et al. [1986]; l: [Oels
and Rehage, 1977]. Abbreviations: OTP, o-terphenyl: C6H4(C6H5)2; TPCM,
triphenylchloromethane: C(C6H5)3Cl; OPP, o-phenylphenol: C6H4(C6H5)OH;
Polyvinylacetate: [-CH2(COOCH3)CH-]n; Polyvinylchlorid: [-C(ClH)CH2-]n ;
Polystyrene: [-CH(C6H5)CH2-]n; Phenoxy: [-CH2CH(OH)CH2O(C6H4)-
]n ; Polycarbonate: [-C2O(C6H4)C(CH3)2(C6H4)O-]n; Polysulfone:
[-(C6H4)SO2(C6H4)O(C6H4)C(CH3)2(C6H4)O-]n; Polyarylate: [-
CO(C6H4)COO(C6H4)C(CH3)2(C6H4)O-]n.

31



4. Strongly correlating viscous liquids

In Paper I it is shown that if Πlinear
pT = 1 then ΛpT (ω) = 1 at any ω. Such

liquids are referred to as “Single parameter liquids”. Moreover, if Λ(ω) is unity
in one ensemble, then it is unity in all ensembles:

1 = ΛpT (ω) = ΛV T (ω) = ΛpS(ω) = ΛV S(ω). (4.4)

This is reasonable since is would be peculiar if “single parameter”-ness was
ensemble dependent. However, if ΛpT (ω) > 1 we cannot say that they are
equal. Nevertheless, if one of the ratios is close to unity, the others are likely
also to be close to unity, as demonstrated in simulations later.

An equivalent way of expressing “single parameter”-ness is3

∆p̄(t) = γpS∆s̄(t) when controlling V and T (4.5)

where the bar indicates fluctuations on some relaxing time-scale. If the relation
is exact, the bar is in principle not needed. Later, however, we will discuss
a situation where these equations are approximate (replacing “=” with “≃”).
Then the bar makes a difference. Again, since “single parameter”-ness must be
ensemble independent, it follows that

∆V̄ (t) = γV S∆s̄(t) when controlling p and T, (4.6)

∆p̄(t) = γV T ∆T̄ (t) when controlling V and S, (4.7)

and

∆V̄ (t) = γV T ∆T̄ (t) when controlling p and S. (4.8)

The equations apply when the controlling parameters are held constant. Then
the free parameters will fluctuate in a correlated manner (on the relaxing time-
scale indicated by the bar). Also, the equations apply to perturbations (in
the linear regime). Then relaxation of the free parameters follows the same
(scaled) function.

Equations 4.5 to 4.8 answer the question: What is the single parameter?
There is only one internal relaxing parameter in the system. Mechanical and
thermal relaxation are slaves of this parameter. It is reasonable to speculate
that other quantities, like dipole-moment, are also slaves of the single parame-
ter. If dipole-moment is a slave, then dielectric measurements would reflect the
“single parameter”-ness. This would make single parameter liquids even more
interesting due to the simplicity.

All of the equations in this subsection (Equations 4.3 to 4.8) are equivalent,
and any of them can be regarded as the definition of a single parameter liquid.
It is easy to show from one of Equations 4.5 to 4.8 that a corresponding ΛXY (ω)
is equal to unity. An example is given in next subsection. Showing it the other
way, that one of Equations 4.5 to 4.8 can be derived from a cooresponding
ΛXY (ω) being unity can also be shown. This is done in Paper I. In the following
we will consider Equations 4.3 to 4.8 as the definition of a single parameter
liquid. ΛXY (ω) = 1 is regarded as a consequence. In future studies this way
of thinking is recommended.

3s = S/V is entropy per unit volume.
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A single order-parameter of viscous liquids

4.1.2 Connecting Progogine-Defay ratio to a correlation

coefficient

Single parameter liquids and strongly correlating viscous liquids are related
as discussed in the following. The inverse square-root of the Progogine-Defay
ratio equals some correlation coefficient.

This will be demonstrated in the constant V T ensemble. To keep tem-
perature constant, entropy has to be transferred between a heat-bath and the
sample: ∆S(t) = ∆q(t)/T where q is heat. Since the volume is constant (no
p∆V work) this heat is seen in the sample as a change of the total energy ∆E
and therefore ∆E(t) = T∆S(t). Since we will relate this to computer simu-
lations, where total energy is easy to access, we will write energy instead of
entropy.

If c′′V (ω), K ′′
T (ω) and β′′

V (ω) are the imaginary parts of the frequency depen-
dent isochoric specific heat capacity per unit volume, isothermal bulk modulus
and isochoric pressure coefficient4 respectively, then the dynamic Prigogine-
Defay ratio is (Appendix of Paper I)

ΛV T (ω) ≡ −c′′V (ω)K ′′
T (ω)

T [β′′
V (ω)]2

. (4.9)

The fluctuation-dissipation theorem [Smit and Frenkel, 2001, Appendix C] con-
nects equilibrium fluctuations to response functions. If ∆E(t) = E(t) − 〈E〉,
∆p(t) = p(t)−〈p〉 and Cω{f(t)} = 1

2π

∫

f(t) cos(ωt)dt denotes the cosine trans-
form of f(t), then (Paper IV)

c′′V (ω) =
ω

V kBT 2
Cω{〈∆E(0)∆E(t)〉V T }, (4.10)

K ′′
T (ω) = − ω

V kBT
Cω{〈∆p(0)∆p(t)〉V T }, (4.11)

β′′
V (ω) =

ω

V kBT 2
Cω{〈∆E(0)∆p(t)〉V T }. (4.12)

Combining equation 4.9 to 4.12, ΛV T (ω) can be re-expressed as

ΛV T (ω) =
Cω{〈∆E(0)∆E(t)〉V T }Cω{〈∆p(0)∆p(t)〉V T }

[Cω{〈∆E(0)∆p(t)〉V T }]2
. (4.13)

For later use, we will also define the frequency-dependent slope as

γpE(ω) = V

√

Cω{〈∆p(0)∆p(t)〉V T }
Cω{〈∆E(0)∆E(t)〉V T }

(4.14)

that can be written (from Equations 4.10 and 4.11) as

γpE(ω) =

√

−K ′′
T (ω)

Tc′′V (ω)
. (4.15)

4See the Appendix of Paper I for the definition of (all) the frequency-dependent response
functions
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Cω(f(t)) relates to fluctuations of f(t) on a 1/ω time-scale (similar to mak-
ing a running-average over an 1/ω time-window) and thus,

(ΛV T (ω))−1/2 =
Cω{〈∆E(0)∆p(t)〉V T }

√

Cω{〈∆E(0)∆E(t)〉V T }Cω{〈∆p(0)∆p(t)〉V T }
(4.16)

is a measure of how correlated p and E are on this time-scale. If we regard
Equation 4.5 as our definition of a single parameter liquid, then it follows that
(ΛV T (ω))−1/2 = 1.

In computer simulations, and conceptually, a more convenient way to study
slow thermodynamic fluctuations is though time-correlation functions [Hansen
and McDonald, 2006] and defining a time-dependent correlation coefficient as

RpE(t) ≡ 〈∆E(0)∆p(t)〉V T
√

〈∆E(0)∆E(t)〉V T 〈∆p(0)∆p(t)〉V T

(4.17)

and a time-dependent slope

γpE(t) =

√

〈∆p(0)∆p(t)〉V T

〈∆E(0)∆E(t)〉V T
. (4.18)

From the fluctuation dissipation theorem it follows that this is what could be
derived from measurements of step experiments [Smit and Frenkel, 2001].

Let us set-up some equations to illustrate possible scenarios of equilibrium
fluctuations. Let x(t) and y(t) be the conjugated variables of the fixed variables
X and Y respectively. For simplicity, we will shift and normalize x and y so
〈x〉 = 〈y〉 = 0 and 〈x2〉 = 〈y2〉 = 1. Imagine that x(t) and y(t) are sums
of some hidden independent stochastic Debye processes f1(t), f2(t), s1(t) and
s2(t). They are independent so cross-correlation functions are zero. Let f1 and
f2 be fast processes, 〈f1(0)f1(t)〉 = 〈f2(0)f2(t)〉 = exp(−t), and s1 and s2 be
slow process, 〈s1(0)s1(t)〉 = 〈s2(0)s2(t)〉 = exp(−t/100). Write x(t) as

x(t) = Gλx
λxf1(t) + Gλx

(1 − λx)s1(t) (4.19)

where λx (0 ≤ λx ≤ 1) determines the relative size of the fast process, and

Gλ = 1/
√

λ2 + (1 − λ)2, (4.20)

ensures normalization5, 〈x2〉 = 1. In addition to f1 and s1, let y(t) also depend
on f2 and s2 to introduce some de-correlation between x and y:

y(t) = Gλy
Gλf

λy[λff1(t) + (1 − λf )f2(t)]

+ Gλy
Gλs

(1 − λy)[λss1(t) + (1 − λs)s2(t)]. (4.21)

where λy (0 ≤ λy ≤ 1) determines the relative size of fast process. λf (0 ≤
λf ≤ 1) and λs (0 ≤ λs ≤ 1) determines the amount of correlation on fast and
slow time-scales respectively. The time correlation functions for x and y are

〈x(0)x(t)〉 = G2
λx

λ2
x〈f1(0)f1(t)〉

+ G2
λx

(1 − λx)2〈s1(0)s1(t)〉, (4.22)

5Since 〈x2〉 = G2

λx
[λ2

x〈f
2

1
〉+(1−λx)2〈s2

1
〉+2λx(1−λx)〈f1s1〉] = 1, 〈f2

1
〉 = 〈s2

1
〉 = 1 and

〈f1s1〉 = 0 then Gλ = 1/
p

λ2 + (1 − λ)2, Equation 4.20.
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A single order-parameter of viscous liquids

Figure 4.1: A possible scenario of thermodynamic fluctuations, Equations 4.19
and 4.21. In the parametrization shown, x and y are strongly correlated on
long time-scales, but not on short time-scales. See also Figure 4.2.
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4. Strongly correlating viscous liquids

Figure 4.2: A possible scenario of thermodynamic fluctuations, Equations 4.19
and 4.21. In the parametrization shown, x and y are strongly correlated on
short time-scales, but not on long time-scales. See also Figure 4.1.
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〈y(0)y(t)〉 = G2
λy

λ2
yG2

λf
λ2

f 〈f1(0)f1(t)〉
+ G2

λy
λ2

yG2
λf

(1 − λf )2〈f2(0)f2(t)〉
+ G2

λy
(1 − λy)2G2

λs
λs〈s1(0)s1(t)〉

+ G2
λy

(1 − λy)2G2
λs

(1 − λs)〈s2(0)s2(t)〉 (4.23)

and

〈x(0)y(t)〉 = Gλx
λxGλy

λyGλf
λf 〈f1(0)f1(t)〉

+ Gλx
(1 − λx)Gλy

(1 − λy)Gλs
λs〈s1(0)s1(t)〉. (4.24)

Since the auto-correlation functions of f1, f2, s1 and s2 is simply exponential
relaxations it is straightforward to get an analytical expression of the time-
dependent correlation coefficient Rxy(t), Equation 4.17. Moreover, the cosine
transform of exponential relaxation is given analytically [Spiegel and Liu, 1999],
Cω{exp(−t/τ)} = ℑ{ 1

iω+1/τ }, where
√
−1 = i and ℑ is the imaginary part.

Thus, the dynamic Prigogine-Defay ratio ΛXY (ω), Equation 4.13, also has an
analytic expression. Three parametrization are shown on Figures 4.1, 4.2 and
4.5.

Now, consider a strongly correlating viscous liquid (Chapter 2). When
ΛV T (ω) is evaluated, fast (picoseconds) kinetic parts of p and E are aver-
aged out. Qualitatively this corresponds to the parametrization of Figure 4.1.
Only the configurational parts survive so Ē(t) = Ū(t) and p̄(t) = W̄ (t)/V
(again, the bar indicates an average). A simple minded guess is therefore
that (ΛV T (ω))−1/2 is equal to the W -U energy correlation coefficient, RWU .
Strictly speaking, we cannot make this connection unless RWU is exactly unity.
To demonstrate this, think of x = W and y = U in Figure 4.1. Then the figure
illustrates a situation where (ΛV T (ω))−1/2 > RWU . The opposite situation,
(ΛV T (ω))−1/2 < RWU , is also possible as shown in Figure 4.2 (by changing the
parametrization).

A realistic model system, the Kob-Andersen binary Lennard-Jones liquid,
show, however, that to a good approximation

RpE(t) ≃ RWU (4.25)

and
(ΛV T (ω))−1/2 ≃ RWU , (4.26)

as seen on Figure 4.3 and 4.4. This is a consequence of RWU being close
to unity. Moreover, the W -U slope γWU can to a good approximation be
calculated from

γpE(ω) ≃ γWU , (4.27)

and
γpE(t) ≃ γWU . (4.28)

Before we move on, a final comment should be made. Measurements on
viscous liquids typically reveal more than one relaxation processes. Think of a
situation where a liquid has a slow α-relaxation and a faster β-relaxation. Imag-
ine that individually they are strongly correlating, but gives different strength
to x and y. In other words, they have different slopes. Such a situation is
shown on Figure 4.5. Note that in the region where the two processes mix,
there is a decrease of correlation. Experimental data of ΛpT (ω) can in this way
give some insight about the origin of relaxations.
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Figure 4.3: Auto- and cross correlation functions of (total) energy and pres-
sure of the Kob-Andersen binary Lennard-Jones liquids at T = 0.434. A
stretch exponential (fitted at t > 100), A exp(−(t/τ)−β), are shown. The
linear Prigogine-Defay ratio (Equation 4.2) can be estimated as Πlinear

V T ≃
0.255√

0.187·0.300
= 1.08 ((Πlinear

V T )−1/2 ≃ 0.962) using the prefactors of the fit. The
lower panels shows the time dependent correlation coefficient RpE(t) (Equa-
tion 4.17) and the corresponding slope (Equation 4.18). The W -U correlation
coefficient RWU = 0.936 and W -U slope γWU = 5.52 are indicated with dashed
lines.
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Figure 4.4: Normalized imaginary parts of natural response functions of the
NV T ensemble (Equations 4.10 to 4.12) of the Kob-Andersen Lennard-Jones
liquids at T = 0.434. The peak to the right is partially a consequence of the
(artificial) Nosé-Hoover thermostat [Nosé, 1984, Hoover, 1985] and peak on
the left is the structural relaxation peak. Note that the left-hand side of the
structural relaxation peak has slope +1 and the right-hand side has close to
slope − 1

2 (in the log-log representation). This is in good agreement with what
is found in experiments [Nielsen et al., 2008] (note that the stretch exponential
β, Figure 4.3, is somewhat larger than the limiting slope). The lower panels
show the inverse square root of the dynamic Prigogine-Defay ratio (Equation
4.9) and the corresponding slope (Equation 4.14). The instantaneous W -U
correlation coefficient RWU = 0.936 and slope γWU = 5.52 are indicated with
red dashed lines.
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Figure 4.5: A possible scenario of thermodynamic fluctuations, Equations 4.19
and 4.21. Since γf = γs = 1, the fast and one slow Debye process would give
perfect correlation between x and y if they where alone. Since γx = 0.4 is
different from γx = 0.2 the slope of the fluctuations are different for the fast
and the slow Debye relaxation. The consequence of this is that in the “mixing
region” of the two internal Debye relaxations (ΛXY (ω))−1/2 have a dip.

4.1.3 Rethinking the classical Prigogine-Defay ratio

As discussed earlier, the classic Prigogine-Defay ratio Πclassic
pT , Equation 4.1

page 29, is not strictly well-defined. However, let us assume that the values of
the (static) response functions of the liquid correspond to the ω → 0 limits and
the (static) responses functions of the glass6 correspond to the ω → ∞ limits
of the frequency-dependent response functions of the equilibrium liquid at Tg.
This would make Πclassic

pT equal to the well-defined linear Prigogine-Defay ratio
Πlinear

pT , Equation 4.2 (page 30). Then, the inverse square root of the classical
Prigogine-Defay ratio reflects a correlation coefficient,

(Πclassic
pT )−1/2 ≃ RV S(of slow fluctuations), (4.29)

and
(Πclassic

V T )−1/2 ≃ RpS(of slow fluctuations), (4.30)

or, as argued in the previous section,

(Πclassic
V T )−1/2 ≃ RWU . (4.31)

This is a novel interpretation of Πclassic. Also, the W -U slope can be estimated
from the same data as

γWU ≃ γclassic
V T =

√

−∆KT

T∆cV
. (4.32)

6Since a glass can be prepared in numerous ways, there is no unique value of the glass
response functions. How this effects the approximation is a matter of future studies.
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Equations 4.31 and 4.32 are verified for the Kob-Andersen binary Lennard-
Jones liquid, Figure 4.6. This is an useful approximation, since values of the
classical ratio are available in litterateur. A revisit of Πclassic enable us to
investigating the conjecture of Section 2.2 (page 17). This conjecture speculates
that van der Waals bonded liquids are strongly correlating liquids.

First, we investigate Πclassic of some model systems. The Kob-Andersen
binary Lennard-Jones liquid have a ratio close to unity, Figure 4.6. Clarke
[1979] reported Πclassic

pT ≃ 1 for the (single component) Lennard-Jones liquid
and Cape and Woodcock [1980] argue that the ratio must be unity in soft-
sphere systems (consistent with Chapter 3). These authors noted that this was
not in agreement with the wisdom of that time – that Prigogine-Defay ratios
typically had values between 2 and 4 [Gupta and Moynihan, 1976]. However,
in the light of strongly correlating liquids, a ratio close to unity is expected in
all of these model systems. Thus, simulations support the claim that strongly
correlating viscous liquids have Πclassic

pT ≃ 1.
Now, let us reexamine the classical Prigogine-Defay found experimentally,

Table 4.1. Some Πclassic
pT are infact close to unity. In Table 4.1 liquids are listed

with decreasing Πclassic
pT . Note that the lowest values are for the van der Waals

bonded liquids – exactly as it is claimed by the conjecture. As an example,
Takahara et al. [1999] have measured Πclassic

pT = 1.20 ± 0.05 corresponding to a

correlation coefficient of (Πclassic
pT )−

1

2 = 0.92± 0.02 for OTP (67%) mixed with
OPP (33%). This supports the conjecture that van der Waals bonded liquids
are strongly correlating liquids. Unfortunately this the only value of a van der
Waals bonded molecular liquid. However, the van der Waals bonded polymers
also have Πclassic

pT close unity.
Another supporting observation relates to n-propanol, with one OH-group,

and glycerol with three OH-groups. Both molecules are approximately the same
size having a backbone of three carbon atoms. With an increasing number of
OH-groups Πclassic

pT is expected to increase since correlation is destroyed by
hydrogen bonds. Indeed Πclassical

pT (glycerol) = 9.4 is significantly larger than
Πclassical

pT (n-propanol) = 1.9.
There is at present time little interest for Πclassical

pT . Presumably, this is due
to the negative result of Gupta and Moynihan [1976]. However, the presented
rethinking and revisit of the Prigogine-Defay ratio, demonstrates that interest-
ing information can be extracted from the ratio. As we shall see in the following
section the slope γWU is an important quantity for strongly correlating viscous
liquid. This is accessible though equation 4.32. Experimentalists are therefore
urged to regain interest in the Prigogine-Defay ratio – both the classical and
the more well-defined frequency-dependent version.

4.2 Hidden scale invariance

In this section, in Paper VII and in Paper XIII it is argued that strongly
correlating liquids have a hidden scale invariance: State points with the same

Γ ≡ ργs/T (4.33)

have (approximately) the same dynamics and structure (in scaled units). The
scaling exponent γs is the same as γWU , however, since γWU is slightly state
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Figure 4.6: Classical approach to obtain the Prigogine-Defay ratio and slope
of the Kob-Andersen binary Lennard-Jones liquid. A glass at temperature T
was made from a quenched structure (cooled instantaneous to T = 0) taken
from a configuration in equilibrium at T = 0.457 (marked by a arrow). After
500 ps of equilibration, 1000 ps of E and p fluctuations were used to calculate
〈(∆E)2〉Glass, 〈(∆p)2〉Glass and 〈∆E∆p〉Glass. E and p showed no drift (anneal-
ing of the glass) compared to the size of the fluctuations. Within statistical
error, the classical approach reproduces the W -U correlation coefficient and
W -U slope of instantaneously fluctuations.
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point dependent, scaling can only be approximate. Nevertheless, as shown
below in simulations, γs chosen to be the average γWU of the state points of
interest gives good scaling.

The theoretical explanation for hidden scale invariance is as follows: First,
recall the work of Hoover and coworkers [Hoover et al., 1970, Hoover and Ross,
1971, Hoover et al., 1971] showing the simplicity of soft-sphere liquids where
particles interact pairwise via an inverse power-law,

Upow(rij) = ε
(rij

σ

)−n

. (4.34)

In such a systems, physical quantities expressed in units of the characteristic
velocity

vs ≡
√

kBT

m
(4.35)

and the characteristic length

ls ≡
(

N

V

)−1/3

(4.36)

are the same for state points with the same Γ (Equation 4.33) [Hoover et al.,
1971]. Thus, in scaled units state points with the same Γ are identical, having
the same structure and dynamics. Therefore, soft-sphere liquids are said to
have scale invariance.

Now, consider a strongly correlating liquid and recall the origin of the W -U
correlation given in Chapter 3. The pair energy can be written as

U(rij) = Upow(rij) + brij + Udiff(rij) (4.37)

where Upow is referred to as the effective inverse power-law. Let us con-
sider state points with the same Γ in the NV T ensemble. The trajectory at
these state points (and in general) is determined by the visited energy surface
U(~R(t)) =

∑

pairs U(rij), where ~R(t) is the 3N coordinate vector of the system,
~R(t) = {~r1(t), ~r2(t), . . . , ~rN (t)}. As argued in Chapter 3,

∑

pairs[br +Udiff(rij)]
does not fluctuate (at constant volume) and

U(~R(t)) ≃ Upow(~R(t)) + U0(V ). (4.38)

U0(V ) is only a function of volume V . Assume that Upow is not too state
point dependent (γWU nearly constant). Then, strongly correlating liquids
inheritd the scale invariance of structure and dynamics of soft sphere liquids.
It should be noted that strongly correlating liquids are not as simple soft-
sphere liquids. For soft-sphere liquids the pressure can be related directly to
the energy, 3

n (pV/(NkBT ) − 1) = (E/(NkBT ) − 3
2 ) or 3

nW = U (Appendix
A.1); this is not the case for strongly correlating liquids as disused in Chapter
2 (Figure 2.2 page 15). Nevertheless, scale invariance is found in simulations
and experiments as discussed in the following.

Figure 4.7 show the W -U correlation coefficient RWU and the W -U slope
γWU of the Lewis-Wahnström OTP model for a range of state points. Since
RWU is close to unity (0.90 < RWU < 0.93) this is a strongly correlating
liquid. Moreover, the slope γWU only varies 7% about 7.9 for the investigated
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4. Strongly correlating viscous liquids

Figure 4.7: W -U correlation coefficient (top) and W -U slope (bottom) of the
Lewis-Wahnström OTP model. The correlation is strong 0.90 < RWU < 0.93
and the slope varies only slightly around 7.9 (±7%).

state points. For comparison, γWU is about 5.9 with the same spread for the
asymmetric dumbbell model (Paper VII and Paper XIII). Therefore, we should
expect the Lewis-Wahnström OTP liquid to have scale invariance of structure
and dynamics with γs = 7.9.

Figure 4.8 shows the radial distribution function of three selected state
points. Two of the state points have same Γ and the same radial distribution
function as a function of scaled length r′ = r(N/V )1/3 (although the scaling is
not perfect, see legend of Figure 4.8). Thus structure can be scaled as expected.
The third of the shown state points has the same temperature as the first, and
the same pressure as the second. However, for this third state point, scaling of
structure fails since Γ is different from that of the two other state points. In
Paper XIII it is shown that structure of the asymmetric dumbbell model can
be scale as well (simulations conducted by Thomas B. Schrøder).

Scaling of dynamics can be investigated though the diffusion constant. Fig-
ure 4.9 shows scaling of the reduced (using vs and ls defined in Equations 4.35
and 4.36) diffusion constant D∗ = D(N/V )1/3(kBT/m)−1/2 [Rosenfeld, 1999,
Coslovich and Roland, 2008] of the Lewis-Wahnström OTP model. Scaling of
the the asymmetric dumbbell model is shown in Paper VII and Paper XIII. A
equivalent scaling of dynamics has been reported experimentally [Tölle, 2001,
Dreyfus et al., 2003, Alba-Simionesco et al., 2004, Casalini and Roland, 2004,
Roland et al., 2005]. For van der Waals bonded liquids, the structural relax-
ation is only a function of ργs/T :

τα = g(ργs/T ). (4.39)

However, before this study, it was not known that γs ≃ γWU could be calculated
from two response function (see previous section). At first, it was believed that

44



Hidden scale invariance

Figure 4.8: The radial distribution function g(r) (top) at three state points
of the Lewis-Wahnström OTP model. The definition of g(r) is given in 3.2.
In the bottom panel it is shown that when Γ is the same, then the structure
is also the same in scaled units. The inset show a zoom-in on the first peak.
Note that the scaling is not perfect. This is presumably a consequence of rigid
bonds connecting Lennard-Jones particles not scaling.
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4. Strongly correlating viscous liquids

Figure 4.9: Scaling of the reduced diffusion constant of the Lewis-Wahnström
OTP model. Note that the scaling works when the scaling exponent equals the
W -U slope γs = 7.9 ≃ γWU , see Figure 4.7.
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the scaling worked in general for viscous liquids. However, it is now realized
that density scaling does not work for hydrogen bonded and covalent bonded
liquids [Ferrer et al., 1998, Hensel-Bielowka et al., 2002, Roland et al., 2006,
Le Grand et al., 2007, Roland et al., 2008]. This agrees with the theoretical
framework given here, since these liquids are not strongly correlating. In Paper
VII the failure of scaling for non-strongly correlating liquids is demonstrated
by adding charges to the asymmetric dumbbell model (simulations conducted
by Thomas B Schrøder).

Finally, it should be noted that Coslovich and Roland [2009] in a resent
paper also confirms the theoretical frame work given here in simulations of
viscous binary Lennard-Jones mixtures.
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Chapter 5

Volume-energy fluctuations of

phospholipid membranes

This chapter reports a simulation study of phospholipid membranes. Some
membranes have strong correlations between the slow volume and energy fluc-
tuations. The origin of the correlation can be traced to the van der Waals
bonded core (the fatty acyl chains). Thus, strong correlations of membranes
have the same origin as those of strongly correlating simple liquids (Chapter 3).
This demonstrates that complex systems, exemplified by phospholipid mem-
branes, can have properties similar to that of strongly correlating simple liquids
(discussed in previous chapters).

Results of this chapter can also be found in Paper V and Paper X.

5.1 Motivation

A phospholipid is an amphiphilic molecule, thus having a hydrophilic and hy-
drophobic part. In water, phospholipids can self-organize into membranes,
where hydrophobic acyl-chains are shielded from water as sketched in Figure
5.1.

Figure 5.2 shows two snapshots of all-atom molecular dynamics simulations
of such two phospholipid membranes (details are given later). The acyl-chains
are disordered in the membrane to the left, and are ordered in the membrane
to the right. Two such phases are also found in nature, and are referred to as
the (disordered) Lα and the (ordered) Lβ phase [Zhang et al., 1995, Nielsen
et al., 2007].

The Lβ → Lα phase transition is seen as a dramatic increase of response
functions. Figure 5.3 shows excess (caused by the transition) compressibility
∆κT (T ), and excess heat capacity ∆cp(T ) over the Lα → Lβ phase transition of
a di-myristoyl-phosphatidyl-choline (DMPC) membrane. As seen in the figure,
∆κT (T ) and ∆cp(T ) can be superimposed,

∆κT (T ) =
(γHV )2T

V̄ (T )
∆cp(T ). (5.1)

Such a proportionality is a natural consequence if

∆Vi = γHV ∆Hi (5.2)
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Figure 5.1: Sketch of phospholipids forming a spherical vesicle. Extruded phos-
pholipids form such vesicles. Often phospholipid vesicles serve as a simple
model of a biological cell [Alberts et al., 2002]. Hydrophilic head-groups of
lipids are drawn as circles, and hydrophobic fatty acyl-chains as lines. The gray
area represents a hydrophobic region, separating “in-site” water form “out-site”
water. The figure is copied from my master thesis [Pedersen, 2005]. Figure 5.2
show a snap-shot from a simulation of such a phospholipid membrane.

Figure 5.2: Snap-shot from all-atom simulations of two fully-hydrated DMPC
membranes. The membrane on the left is in a disordered phase whereas the
membrane on the right is in an ordered phase. Hydrogen is not shown for
clarity, but is included in the actual simulations. The blue wire-frame indicates
the periodic boundary box. This figure can also be found in Paper X.
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Figure 5.3: Heat capacity and volume expansion coefficient of extruded DMPC
vesicles (Figure 5.1) at the phase transition. The two curves can be superim-
posed, Equation 5.1. This figure is copied from Ebel et al. [2001].

for available micro-states [Ebel et al., 2001, Heimburg, 1998]. Note that this
equation is similar to Equations 4.5-4.8 (page 32). This suggests a connec-
tion between strongly correlating liquids and membranes. As a part of my
master thesis, I simulated phospholipid membranes [Pedersen, 2005, Pedersen
et al., 2007] and it was therefore natural to revisit the simulated membranes
to investigate the above proportionality.

Before moving on, the importance for biological membranes (where the ma-
jor constituents are phospholipids), of a proportionality should be mentioned.
The conventional wisdom is that nerve signals are carried as electrical signals
as formulated in the theory by Hodgkin and Huxley [1952]. However, recently
Heimburg and Jackson [2005] showed that biological membranes may carry
solitonic sound waves, and subsequently speculated that nerve signals may be
carried this way [Heimburg and Jackson, 2007]. An element in the Heimburg-
Jackson theory of nerve signals is that enthalpy and volume are correlated in
their slow thermal fluctuations.

5.2 A simulation study

The following study includes simulations of seven membranes (simulations con-
ducted by Günther H. Peters). The following abbreviations are used:

DMPC-f: fully hydrated di-myristoyl-phosphatidyl-choline membrane in fluid
phase. The initial configuration is taken from Reference [Pedersen et al.,
2007].

DMPC-g: fully hydrated di-myristoyl-phosphatidyl-cholin membrane in or-
dered phase. The initial configuration is built from a configuration in
Reference [Venable et al., 2000].
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DPPC-f: fully hydrated di-palmitoyl-phosphatidyl-choline membrane in fluid
phase. The initial configuration is taken from Reference [Sonne et al.,
2007].

DPPC-g: fully hydrated di-palmitoyl-phosphatidyl-choline membrane ordered
phase. The initial configuration is built from a configuration in Reference
[Venable et al., 2000].

DPPG: fully hydrated di-palmitoyl-phosphatidyl-glycerol membrane in fluid
phase with calcium counter ions. Initial configuration is taken from Ref-
erence [Pedersen et al., 2006].

DPPS: fully hydrated di-myristoyl-phosphatidyl-serine membrane in fluid phase
with calcium counter ions. Initial configuration is taken from Reference
[Pedersen et al., 2006].

DMPSH: fully hydrated and protonated di-myristoyl-phosphatidyl-serine mem-
brane in fluid phase. Initial configuration is taken from Reference [Ped-
ersen et al., 2006].

Some simulation details are given in Table 5.1, however, for more details the
reader is referred to Paper X and References [Pedersen, 2005, Pedersen et al.,
2006, 2007].

It is not feasible to have the simulation temperature at the phase tran-
sition and test Equation 5.1 directly since relaxation time of the membrane
simply exceeds the simulation time. However, as demonstrated in the follow-
ing, volume-energy correlations are also present in the fluid and the ordered
phase (where “quasi” equilibrium states can be reached).

Figure 5.4 shows a time-series of slow thermal fluctuation of volume and
energy (of the DMPC-f membrane). Volume and energy are strongly correlated
with a correlation coefficient of

RV̄ Ū =
〈∆Ū∆V̄ 〉

√

〈(∆Ū)2〉〈(∆V̄ )2〉
= 0.77, (5.3)

where the bar indicates an averaging window of 1
2 ns. This averages out fast

fluctuations. If no averaging is done, the correlation coefficient is reduced to
RV U = 0.35. As seen in the following, this is partially due to fast fluctuations
of the water (recall that water is not a strongly correlating liquid as shown in
Figure 2.3 page 16).

Table 5.1 list RV̄ Ū and Figure 5.5 shows the time-dependent correlation
correlation coefficient,

RV U (t) =
〈∆U(0)∆V (t)〉

√

〈∆U(0)∆U(t)〉〈∆V (0)∆V (t)〉
, (5.4)

of the seven membranes. Five of the membranes, DMPC-f, DPPC-f, DPPC-
g, DMPG and DMPSH, have strong correlations in the slow volume-energy
fluctuations with RV̄ Ū ≥ 0.75 and RV U (t > 0.5 ns) > 0.75. The origin of the
correlation can be traced to the hydrophobic (van der Waals bonded) core of
the membrane. This can be quantified as done in the following:

First, the atoms are divided into three groups, using the following sub-
scripts:
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Figure 5.4: The top panel shows normalized fluctuation of volume, ∆V̄ (t)/σV̄ ,
and energy, ∆Ū(t)/σŪ of the DMPC-f membrane. The bar indicates a 1

2 ns
averaging window. ∆V̄ and ∆Ū are strongly correlated with a correlation
coefficient of RV̄ ,Ū = 0.77. The bottom panel shows normalized fluctuations of
the Voronoi volume of the tail region, ∆V̄t(t)/σV̄t

, and Lennard-Jones energy
of tail-region, ∆ ¯ULJ

t (t)/σ ¯ULJ
t

. The correlation coefficient is RV̄t,
¯ULJ
t

= 0.87.
There figures can also be found in Paper X.

53



5. Volume-energy fluctuations of phospholipid membranes

Table 5.1: Overview of simulation details and results

tsim tprod Nlip T Nwat

Nlip
RV̄ Ū γV̄ Ū RŪŪt

[ns] [ns] [K]
DMPC-f 151 121 128 330 33 0.77 6.7 0.82
DMPC-g 65 36 64 286 33 0.47 4.3 0.31
DPPC-f 180 124 72 325 29 0.87 7.1 0.89
DPPC-g 78 48 64 304 33 0.75 4.6 0.71
DMPG 149 49 128 330 33 0.82 5.9 0.80
DMPS 139 49 128 340 36 0.59 5.3 0.64
DMPSH 136 35 128 340 37 0.78 9.2 0.84

tsim: Total simulation time in nanoseconds; tprod: Length of production run
in nanoseconds (only membranes in quasi-equilibrium, i.e., with no detectable
drift in the area per molecule, were included in the data analysis); Nlip: Number
of lipid molecules; T : Temperature in Kelvin; Nwat/Nlip: Number of water
molecules per lipid molecule; RV̄ Ū : Energy-Volume correlation coefficient; γV̄ Ū :
Energy-volume scaling factor in Å3 mol/kcal; RŪŪt

: Energy-“Energy of acyl
groups” correlation coefficient.

Figure 5.5: Time-dependent correlation function of volume-energy (Equation
5.3. DMPC-f, DPPC-f, DPPC-g, DMPG and DMPSH membranes have strong
volume-energy correlation in the slow fluctuations, RV U (t > 0.5 ns) > 0.75.
This figure can also be found in Paper X.
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Figure 5.6: The principle of construction of Voronoi polyhedrons [Voronoi,
1908]. For simplicity, a construction in two dimensions is shown. On the left,
circles represent particles. The Voronoi polygon of the center atom is drawn
with full lines. Points included in this volume have the center particles as the
closest particle. The Voronoi polygons of a collection of particles are shown on
the right. Note that the Voronoi polygons tile space. The total area is therefore
the sum of Voronoi areas. In three dimensions polygons become polyhedra and
the total volume is the sum of the Voronoi volumes. This figure is copied from
my master thesis [Pedersen, 2005].

t for “tail”. Atoms of −CH2− and −CH3 groups of the fatty acyl-chains.
Shown as light blue atoms in Figure 5.2.

h for “head”. The remainder of the lipid atoms. As seen in Figure 5.2, these
atoms are located in the interface and are in close contact with water.

w for “water”. Shown as red spheres in Figure 5.2. Note that water is excluded
from the core of the membrane.

The volume of a given region is calculated by summing Voronoi volumes
[Voronoi, 1908] of the heavy atoms (excluding hydrogen); V = Vt+Vh+Vw. The
principle of construction Voronoi polyhedrons are given in Figure 5.6. Also,
energy can be split up in three contributions; U = Ut + Uh + Uw where

Ux = U intra
x +

1

2

∑

i = x

∑

j = all

U coul
ij +

1

2

∑

i = x

∑

j= all

ULJ
ij , (5.5)

with x either tail, head, or water. U intra
x is the energy of intra-molecular bonds,

U coul
ij = qiqj/(4πǫ0rij) , (5.6)

is the Coulomb energy of two pairs, and

ULJ
ij = 4εij((σij/rij)

12 − (σij/rij)
6) (5.7)

is the Lennard-Jones pair energy.
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Figure 5.7: Terms of equation 5.8 for the DMPC-f membrane. See text after
this equation for more details. This figures can also be found in Paper X.

The auto-correlation functions of volume and energy (Equation 5.4), can
now be split into six terms:

〈∆V(0)∆V(t)〉 = 〈∆Vt(0)∆Vt(t)〉
+ 〈∆Vh(0)∆Vh(t)〉
+ 〈∆Vw(0)∆Vw(t)〉
+ 2〈∆Vt(0)∆Vh(t)〉
+ 2〈∆Vt(0)∆Vw(t)〉
+ 2〈∆Vh(0)∆Vw(t)〉, (5.8)

with V either E or V . Figure 5.7 shows the six terms of volume and energy
respectively (DMPC-f membrane). The only non-vanishing term of slow (t ' 1

2
ns) fluctuations of volume is 〈∆Vt(0)∆Vt(t)〉, showing that slow fluctuations
of volume are dominated by the tail-region, as expected. Also slow energy
fluctuations are dominated by the tail region. However, it should be noted that
the contributions to fluctuations from water and head-region are significant. As
discussed later, this weakens the (total) volume-energy correlation of a given
membrane, explaining that some membranes have stronger Ū -V̄ correlation
than others.

Also, Figure 5.7 shows an additional splitting of the tail-energy in inter-
molecular bond energy, Lennard-Jones (or van der Waals) energy and Coulomb
energy (similar to that of Equation 5.8). As expected, slow fluctuations are
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A simulation study

dominated by the Lennard-Jones contribution.
The analysis suggests that the origin of the (total) volume-energy correla-

tion can be traced to the van der Waals bonded tail region:

∆V̄t ∝ ∆ŪLJ
t , (5.9)

where
ULJ

t =
1

2

∑

i=tails

∑

j=all

ULJ
ij (5.10)

Remember, however, that we throw away some non-vanishing energy terms.
Nevertheless, RV̄t,

¯ULJ
t

= 0.87 is larger than RV̄ Ū = 0.78 strengthens this con-
clusion. As mentioned earlier, the correlation is weakened by the tail-energy
not completely dominating slow fluctuations. To investigate this further, RŪŪt

can be used as a measure of how much of the energy fluctuations comes from
the tail region. Comparing RV̄ Ū with RŪŪt

, as done in Table 5.1, shows that
large values of RŪŪt

is followed by RV̄ Ū and vice versa.
Finally, a volume-energy scaling factor (or slope) can be calculated from

the simulations as

γV̄ Ū =

√

〈(∆V̄ )2〉
〈(∆Ū)2〉 (5.11)

The experimental value (Equations 5.1) is found to be (7.788 ± 0.110) × 10−4

mL/J = (5.418 ± 0.077) Å·mol/kcal for DMPC membranes [Ebel et al., 2001].
This roughly agrees with the values calculated in simulations, as seen in Table
5.1. One caveat is that γV̄ Ū of the fluid membranes is approximately two times
that of the ordered membrane. From the scaling given by Equation 5.1 it is
expected that they should be the same. More work is needed to clarify this.

Finally it should be noted that energy and volume generally do not have
significant correlation with membrane area or the chain order parameter defined
as [Tieleman and Berendsen, 1996]

SCD =

∣

∣

∣

∣

〈

3

2
cos2(θCD) − 1

2

〉

ch

∣

∣

∣

∣

(5.12)

where θCD is the angle between the membrane normal and the C-H bond of
a given methylene group, and 〈. . .〉ch denotes an average over all methylene
groups in all chains1. Correlation coefficients are listed in Table 5.2.

To conclude this chapter: It has been that demonstrated that a complex
system can have properties similar to that of a strongly correlating liquid. Note,
the importance of separation of time-scales. What happens is that a strongly
correlating element of the system dominates fluctuations on some time-scale.
In membranes, slow fluctuations of energy and volume are dominated by van
der Waals bonded core. Qualitatively this corresponds to what is shown in
Figure 4.1 (page 35).

1Note that usually a static SCD is reported, and for individual methyl-groups. Here a
dynamic version is defined.
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5. Volume-energy fluctuations of phospholipid membranes

Table 5.2: Correlation coefficients

R ¯V UV̄ γV̄ Ū RŪŪt
RŪĀ RV̄ Ā RĀS̄CD

RŪS̄CD
RV̄ S̄CD

DMPC-f 0.77 6.7 0.82 0.50 0.57 -0.75 -0.49 -0.54
DMPC-g 0.47 4.3 0.31 0.02 0.05 -0.64 0.12 0.14
DPPC-f 0.87 7.1 0.89 -0.29 -0.36 0.00 -0.61 -0.71
DPPC-g 0.75 4.6 0.71 -0.16 0.12 -0.67 0.09 -0.07
DMPG 0.82 5.9 0.80 0.41 0.40 -0.76 0.01 0.08
DMPS 0.59 5.3 0.64 0.30 0.28 -0.71 0.04 0.20
DMPSH 0.78 9.2 0.84 0.43 0.51 -0.50 0.05 0.14

RV̄ Ū : Energy-Volume correlation coefficient; γV̄ Ū : Energy-volume scaling fac-
tor in Å3 mol/kcal; RŪŪt

: Energy-“Energy of acyl groups” correlation coef-
ficient; RŪĀ: Energy-Area correlation coefficient; RV̄ Ā: Volume-Area cor-
relation coefficient; RĀS̄CD

: Area-“chain order-parameter” correlation coeffi-
cient; RŪS̄CD

: Energy-“chain order-parameter” correlation coefficient; RV̄ S̄CD
:

Volume-“chain order-parameter” correlation coefficient.
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Chapter 6

Stability of a binary mixture

Long-time simulations are important for computational studies of viscous liq-
uids. It is now possible to investigate low temperature liquids with several
decade of relaxation times. Nowadays, simulation times of 0.1 ms are within
reach for a system of 1000 particles, Figure 1.7 (page 8). As shown below,
however, some of the standard models used in the computational community
of viscous liquids crystallize on these time-scale. Paper II reports crystallization
of the Wahnström binary Lennard-Jones liquid [Wahnström, 1991]. Toxværd
et al. [2007] report crystallization1 of the Kob-Andersen Lennard-Jones liquid
[Kob and Andersen, 1994, 1995a,b]. Also the ortho-terphenyl model suggested
by Lewis and Wahnström [1994] crystallizes as seen in Figure 6.1.

The following sections gives a detailed investigation of the stability of the
Wahnström binary Lennard-Jones liquid. A paper including these results are
at the moment in the process of being written in collaboration with Peter
Harrowell (School of Chemistry, University of Sydney). The stability of the
Kob-Andersen Lennard-Jones liquid is only briefly discussed. More details can
be found in Paper XI. Crystallization mechanism of the Lewis-Wahnström o-
terphenyl model have not been investigated in details. However, the structure
of the formed crystal is shown in Figure 6.1.

6.1 The Wahnström binary Lennard-Jones mixture

This mixture was originally suggested by Wahnström [1991] to study viscous
liquid dynamics. It consists of two kinds of Lennard-Jones particles, labeled
A and B, where the diameter of B particles is σBB/σAA = 1.2 that of the A
particles. The composition is equivmolar, NA = NB . See section 1.2.1, Paper
II and Figure 1.4 for more details.

1In the final days before handing in the thesis, it was realized that the force parameters
for simulating the Kob-Andesen liquid was implemented wrong. The Lennard-Jones binding
energies simulated were ε′αβ = σαβεαβ where σαβ and εαβ are the original Kob-Andersen

parameters. Thus, the binding energies of BB pairs, ε′BB = σBBεBB = 0.88 ·0.5 = 0.44, and
AB, ε′AB = σABεAB = 0.8 · 1.5 = 1.2, pairs were reduced. A reduction of the AB binding
energy will increase composition fluctuations, and thereby making the system more prone to
crystallization. It is therefore still an open question on what time scale the Kob-Andersen
mixture will crystallize.
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6. Stability of a binary mixture

Figure 6.1: Crystal formed spontaneously from the melt of the Lewis-
Wahnström o-terphenyl model [Lewis and Wahnström, 1994] (three Lennard-
Jones particles placed in a isosceles triangle with an angle of 75°, see Figure
1.5). As seen in the upper part of the figure, all of the 324 molecules are ar-
ranged in an ordered structure (center particles are colored blue). A part of
crystal viewed from two angles is shown in the lower part of the figure. The
gray lines are guidelines for the eye.

60



The crystal

Figure 6.2: Time series of energy in two (selected) simulations of the Wahn-
ström binary Lennard-Jones liquid at T = 0.624. The dramatic drop in energy
is a consequence of crystallization. The structural relaxation time of the liquid
is of the order of a nanosecond.

6.2 The crystal

The Wahnström binary Lennard-Jones mixture can spontaneously form a crys-
tal from the melt. This is seen as a dramatic drop in energy as shown in Figure
6.2. An inspection of particle positions, as done in Figure 6.3, reveals a large
crystal with MgZn2 structure2 (and defects). The MgZn2 structure is not built
into the model, and was not, the authors knowledge, predicted. Table 6.2 lists
the energy and volume of some close-packed crystal structures. This analysis
indeed suggests that the MgZn2 structure is the true ground state.

The crystal is one of the so-called Laves phases that comprise the largest
group of inter-metallic phases [Stein et al., 2004, 2005]. Understanding crystal-
lization of a Laves structures is therefore important in its own right. MgZn2 has
optimal packing of hard-spheres when the size ratio is σB/σA =

√

3/2 ≃ 1.22,
close to the size ratio σB/σA = 1.2 of the Wahnström mixture. This close-
packing feature of MgZn2 makes crystallization related to packing.

The crystal formed is remarkable on two accounts: i) The AB liquid is off-
composition compared to the A2B crystal. Hence, a significant composition
fluctuations must accompani crystal formation. ii) The crystal structure is
quite complex, having a unit cell of 12 particles. In the light of this, it is
remarkable that the crystal forms at all. This is naturally also the reason why
crystallization of this model has not been reported before.

2MgZn2 structure (C14) have a trigonal, hexagonal unit-cell with P63/mm symmetry
with six A particles on the h position, two A particles on the a position and four B particles
on the f position, where h, a and f are the Wyckoff letters [Pearson, 1972, page 657].
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6. Stability of a binary mixture

Figure 6.3: Crystal formed spontaneously from the melt of the Wahnström
binary Lennard-Jones liquid. B particles are colored white (light gray) and
A particles are colored green (dark gray). The coordinates are the quenched
structure taken at the last point of the black curve in Figure 6.2. The left
hand side of the figure shows the positions of all the particles. The crystal
fills roughly half of the box. The remainder of the box is filled with a B-rich
liquid since the total composition is AB whereas that of the crystal is A2B.
The structure of the crystal is MgZn2 is shown in Figure 6.5. The right hand
side of the figure shows the formed crystal represented as Frank-Kasper bonds
(see Figure 6.7). Configurations are rotated for maximum clarity.

6.3 Mechanism of crystallization

First, define the first shell as particles within the first peak of the radial dis-
tribution function g(r) using the first minimum as cutoff, as shown in Figure
6.4. Then, define local composition as χfs

B = ZB/Z, where ZB is the number
of B particles, and Z is the total number of particles in the first shell.

Let us take a closer look at the MgZn2 crystal structure shown in Figure
6.5. The smaller A particles have distorted icosahedral first shells with a lo-
cal composition of χfs

B = 0.5. Figure 6.6 shows the distribution of first shell
arrangements of the liquids. Note that the most common is of the same kind
as the crystal. Coslovich and Pastore [2007] also noted the high abundant of
this arrangement. So the local arrangement around A particles is roughly the
same in liquid and crystal. On the other hand, crystalline B particles have
a first shell that is very different from the liquid. The crystalline B particles
have a high coordination of 16 particles and a local composition of χfs

B = 0.25.
This first shell arrangement is unusual in the liquid (Figure 6.6). Thus, the
structural fluctuation leading to crystallization implies a significant change of
the first shells of B particles. Note that the composition fluctuation needed is
only seen around B particles.

To undertake a study of the rearrangement associated with crystallization,
we need to characterize local structure. I have extended the common neighbor
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Mechanism of crystallization

Table 6.1: Energy and packing of Wahnström crystals.

Crystal V/N U/N First shell compositions
[σ3

AA] [εAA]
Pure A

FCC†(A) 0.93663 -7.26293 A-12-0
A2B mixture

(Laves) MgCu2 1.13351 -7.28515 A-6-6 and B-12-4
(Laves) MgZn2 1.13193 -7.29910 A-6-6 and B-12-4
(Laves) MgNi2 1.13275 -7.29179 A-6-6 and B-12-4

MoPt2 1.16593 -6.83436 A-9-5 and B-10-4
MoSi2 1.16594 -6.83429 A-9-5 and B-10-4

AB mixture
Liquid 1.33341 -5.37896 Figure 6.6
CuAu 1.26577 -6.84244 A-3-8 and B-8-6

FeB 1.26449 -6.84971 A-4-8 and B-8-6
3
4MgZn2(A2B)+ 1

4FCC(B) 1.23842 -7.20207 A-6-6, 75% B-12-4
and 25% B-0-12

3
4CuZr2(AB2)+1

4FCC(A) 1.26088 -6.91559 75% A-4-8, 25% A-12-0
and B-4-9

1
2Cu(A)+ 1

2FCC(B) 1.24726 -7.08695 A-12-0 and B-0-12
AB2 mixture

CuZr2 1.36896 -6.79967 A-4-8 and B-4-9
3
8MgZn2(A2B) + 5

8FCC(B) 1.39815 -7.05651 A-6-6, 37.5% B-12-4
and 62.5% B-4-9

Pure B
FCC(B)∗ 1.55788 -6.91096 B-0-12

Energies and volumes were calculated on the basis of NpT simulations of pure crystals:

FCC† of A particles, MgCu2, MgZn2, MgNi2, MoPt2, MoSi2, CuAu, FeB, AB2, CuZr2 and

a FCC of B particles. Crystals where simulated at T = 0.624 and p = 4.7 (same as liquid).

All these crystals are stable at this temperature and pressure (in the simulated time

interval of some nanoseconds). The candidates for structures where selected from Reference

[Kummerfeld et al., 2008] and private correspondence with Toby S. Hudson. Note that at

all the investigated compositions, MgZn2 in combination with a pure FCC crystal (A or B)

has lowest energy and volume, thus this is a good candidate for the true ground state of the

system (of-course, Gibbs free energies are the appropriate quantities to compare). †FCC:

face center cubic or Cu. ∗The energy of the FCC crystals (pure A and pure B) are different

although εAA = εBB . The difference is an artifact of the truncation of the potential.
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6. Stability of a binary mixture

Figure 6.4: Radial distribution function g(r) of the liquid at T = 0.624. The
first minimum is used as cut-off for when defining particles of the first shell.

analysis suggested by Honeycutt and Andersen [1986] so it takes the two kinds
of particles into account: Consider two neighbor particles and their common
neighbors as shown in Figure 6.7. Six integers is used to characterize such a
(two colored) bi-pyramid graph, RnAnBsAAsABsBB . Where R is the type of
neighbor pair so R = 1 for AA, R = 2 for AB and R = 3 for BB, nA and nB

is the number of A and B common neighbors respectively, and sAA, sAB and
sBB is the number of AA, AB and BB contacts amongst common neighbors.
We will refer to such a local arrangement as a bond. For later use, the stability
of a common neighbor arrangement is measured as the time interval of the first
and the last observation. This is referred to as the lifetime. Note that in this
time interval a particle can leave the arrangement as long as it returns at a
later time.

The crystal is made up of just five types of bonds. Three AA bonds, 114023,
123122 and 132221, an AB bond, 232140, and a BB bond, 360600. In the
following the 360600 BB bond will play an important role in the analysis. As
seen in Figure 6.5 the MgZn2 crystal structure can be viewed as a hexagonal
diamond structure of B particles connected by such bonds. Hence, each B has
four 360600-bonds pointing to the corners of a tetrahedron as seen on Figure
6.5. The 360600-tetrahedron is the basic element of all the Laves structures.
The difference between the structures is how the 360300-bonds are connected.
Such an analysis was the subject of the celebrated work by Frank and Kasper
[1958, 1959]. In acknowledgment of their work we will henceforth referrer to
360600 bonds as Frank-Kasper bonds. A Frank-Kasper bond is shown in Figure
6.7.

Let us return to the liquid (at T = 0.624). Figure 6.8 shows the average
lifetime and abundance of bonds in the liquid. The most common and stable
AA and AB bonds are the ones with five bonded common neighbors, nA+nB =
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Mechanism of crystallization

Figure 6.5: The MgZn2 crystal structure of the Wahnström binary Lennard-
Jones liquid. The white B particles are arranged in a hexagonal diamond
structure, connected with Frank-Kasper bonds (see Figure 6.7). Only first
shell green A particles of the central B are shown for clarity. Particles have
three kind of first shells shown in the lower part of the figure.

sAA + sAB + sBB = 5. These are of the same kind as the bonds of the crystal.
This is consistent with the previous conclusion, that the local environment of A
particles is similar to that of the crystal. These bonds are not only abundant;
they are also the most stable. This is an interesting observation. Some crystal
structure is built into the liquid, and, moreover gives stability to the liquid.
We will return to this when discussing long-lived structural fluctuations of the
liquid, Subsection 6.4.

One BB bond is different from the others, and that is the Frank-Kasper
bond (Figure 6.7). As seen in Figure 6.8, there are only about six of these
bonds, but when they are there, they are long-lived. The low abundance makes
Frank-Kasper bond ideal for investigating the onset of crystallization. Figure
6.9 shows the number of Frank-Kasper bond at the crystallization event and at
some points where the liquid experience transient dips in energy. At the onset
of crystallization there is, as expected, a large increase of Frank-Kasper bonds.
However, also in the meta-stable liquid, large transient clusters of Frank-Kasper
bonds appear. If two B particles, having one or more Franks-Kasper bonds,
shares A particles, that are a part of these bonds, we will consider the two B
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6. Stability of a binary mixture

Figure 6.6: Distribution of first shells of Wahnström binary Lennard-Jones
liquid. Note that the most frequent first shell of A particles are the same as in
the crystal, whereas this is not the case for the B particles.
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Long-lived structural fluctuations stabilizing the liquid

Figure 6.7: Neighboring particles and their common neighbors characterize by
six integers, RnAnBsAAsABsBB . The arrangement on the left is a AA pair,
R = 1, with one common A, nA = 1 and four common B particles, nB = 4.
The common neighbors have none AA contacts, sAA = 0, two AB contacts,
sAA = 2, and three BB contacts sBB = 3. Thus, this is a 114023-bond. The
arrangement on the right is a 360600-bond referred to as a Frank-Kasper bond.

particles to be in the same cluster. Figure 6.10 shows the largest clusters at the
transient dips in energy shown in Figure 6.9. Some of the clusters are dense
and similar to the crystal, whereas others are open structure not similar to the
crystal. Clearly such an open structure hinders crystallization. Also, clusters
tend to have (broken) pentagons of Frank-Kasper bonds. This is not a feature
of the crystal, and will hinder crystallization. In other words, besides forming
the Frank-Kasper bonds, the bonds also have to be arrange in the right way.

The onset of crystallization must be accompanied by a significant composi-
tion fluctuation. Figure 6.11 shows the average local composition of B particles
with zero to four Frank-Kasper bonds. Note that a substantial part of the com-
position fluctuation takes place at the formation of just a single Frank-Kasper
bond.

We now have a rather complete picture of the crystallization of the Wahn-
ström binary Lennard-Jones liquid. Let us summarize. Local crystalline-like
structure of A particles are build into the liquid as distorted icosahedra with
χfs

B = 0.5. However, B particles are not in a local crystalline-like environment.
The formation of a Frank-Kasper bond, accompanied by a composition fluctu-
ation sets the onset of a possible crystallization event. A cluster will form, and
if it is compact it can continue to grow and eventually lead to non-reversible
growth.

6.4 Long-lived structural fluctuations stabilizing the

liquid

This section addresses the question: What are the long-lived structural fluctu-
ations stabilizing the metastable liquid? We will address this question by an
investigation of the 10% of particles with the longest lifetimes of first shells.
Figure 6.12 shows a cluster analysis of these particles. Stable particles are not
randomly distributed, but are form extended clusters. With decreasing tem-
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6. Stability of a binary mixture

Figure 6.8: Scatter plot of frequency and average lifetime of common neighbor
bi-pyramids. See text for more details.

perature the characteristic size of these cluster grow. This is an example of the
well-known heterogeneity of viscous liquids [Ediger, 2000].

Figure 6.13 show the first shell distribution of stable particles, relative to the
overall distribution. It is possible to identify a particular stable local arrange-
ment: the distorted icosahedra (Z = 12) first shells of A particles. Coslovich
and Pastore [2007] also note that the frequency of this arrangement grows with
decreasing temperature and associated this with the non-Arrhenius growth of
the structural relaxation time (although they use a Voronoi construction to in-
vestigate neighboring particles, see Figure 5.6). The most stable first shells of
B particles are less distinguishable. Nevertheless, a high coordination number
tends to give stability. Note that the more crystalline-like the arrangement
is, the more stability it gives. In other words, the crystal and the liquid use
the same kind of arrangement to get stability. Stability is gained both for the
liquid and crystal by the same kind of local packing. This is an interesting
observation. Often, properties of the liquid are regarded as disconnected from
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Long-lived structural fluctuations stabilizing the liquid

Figure 6.9: The top panels show quenched energy. In Panel 1A the drop in
energy is a result of crystallization. In the remaining panels reversible drops
in energy are observed. The lower panels show that the drops in energy are
accompanied by the formation of extended Frank-Kasper cluster. Clusters at
times marked with arrows are shown in Figure 6.10.

the crystal. Here, a connection is demonstrated. The reason why the liquid
and crystal can use the same kind of local arrangements is the complexity
of the crystal. The locally preferred arrangement can be assembled in many
ways, without forming a crystal. The liquid could be said to have “entropic
frustration”. This phrase is inspired by “geometric frustration”, used to explain
metastability of the single component Lennard-Jones liquid (in three dimen-
sions3). The locally preferred structure of the liquid is a perfect icosahedron.
Icosahedra cannot tile space to make a crystal, and the liquid is said to have
“geometric frustration” [Sadoc and Mosseri, 1999, Tarjus et al., 2005] (the crys-
tal has the face centered cubic structure). The locally preferred structure of a
liquid with entropic frustration can tile space, however, many non-crystal struc-
tures can also be build (high entropy). Other systems with some complexity
of the crystal could also have entropic frustration.

3In two dimensions the is no frustration of a single particle liquid. The locally preferred
structure is a hexagon. Hexagons can tile space to make a crystal.
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6. Stability of a binary mixture

Figure 6.10: Representative transient Frank-Kasper clusters. See the legend
of Figure 6.9 for details about the shown clusters. The cluster at the top is
dense and similar to the crystal. The middle cluster has a more open structure.
Note also the broken pentagon central in the cluster. This is not a feature of
the crystal, and will clearly hinder crystallization. The bottom cluster have an
even more open structure, not similar to the crystal.
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Long-lived structural fluctuations stabilizing the liquid

Figure 6.11: Local composition, χfs
B , of B particles. Note that a large com-

position fluctuation is associated with the formation of a single Frank-Kasper
bond.

Figure 6.12: Cluster analysis of 10% most long-lived first shells. The top panel
shows the cluster distribution at different temperatures. The lower left panel
shows that long-lives particles tends to be in large cluster. The lower panel to
the right shows that the characteristic cluster size increase when temperature
is lowered.
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6. Stability of a binary mixture

Figure 6.13: First shell of 10% most long-lived first shells. Note that particles
with coordination of Z=12 especially stable.

6.5 Kob-Andersen binary Lennard-Jones mixture

The crystallization of the Kob-Andersen binary Lennard-Jones liquid is dis-
cussed briefly in the following. The reader is referred to Paper XI for more
details.

For both the Wahnström and the Kob-Andersen binary Lennard-Jones liq-
uid the size ratio of particles is about 1.2. However, a difference is that the
latter strongly disobeys the Lorentz-Berthelot rule, resulting in a strong AB
attraction (see Figure 1.4 on page 6). Usually the Kob-Andersen mixture is
simulated at A4B1 composition where B refers to the smaller particle4, but if it
is simulated at AB composition it will quickly crystallize in a CsCl structure.
Figure 6.14 shows the distribution of first shells of the Kob-Andersen binary
Lennard-Jones liquid at the A4B1 composition. Note that strong AB attraction
reduce composition fluctuations (compare to the Wahnström mixture, Figure
6.6). This prevents the AB crystal from forming at χB = 0.20. However,
a composition fluctuation can lead to crystallization of A particles in a face
centered cubic (FCC) structure as demonstrated by Toxværd et al. [2007, and
Paper XI]. Crystallization into a pure FCC crystal of A particles and a mixed
CsCl crystal was foreseen by Fernandez and Harrowell [2003]. The FCC crystal
is simple with only a single particle in the unit-cell. Thus, the crystal do not
have the complexity of the Wahnström binary Lennard-Jones liquid, making
the crystallization mechanism simpler.

Crystallization is avoided, if the AA and BB pair potential is truncating at
the minimum and leave the AB pair potential untouched (Paper XI, simulations
conducted by Søren Toxvaerd). See Paper XI for more details on this.

4The standard notation is used for classifying small and large particles. For the Wahn-
ström liquid the larger particles are B’s and smaller particles are A’s. For the Kob-Andersen
liquid the standard notation is the opposite so larger particles are A’s and smaller particles
are B’s.
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Kob-Andersen binary Lennard-Jones mixture

Figure 6.14: First shells of the Kob-Andersen binary Lennard-Jones liquid.
Note that local composition fluctuations σχfs

A
are small compared the Wahn-

ström mixture, Figure 6.6. This is a consequence of strong AB attraction, see
text. The most frequent first shells are different from the crystal (CsCl and
pure A FCC), see text.
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Chapter 7

Outlook

As a summary of the thesis, this chapter provides a list of open questions and
future research projects that would be a natural continuation.

A: The model systems investigated (see Figure 2.3 on page 16) in the study
of thermodynamic fluctuations do not take quantum effects explicitly
into account. First principles molecular dynamics simulations (like the
method suggested by Car and Parrinello [1985]), would be valuable to
get a better understanding of the thermodynamic correlations of real
systems.

B: Strong W -U correlations of the Lennard-Jones liquid are explained by
an effective inverse power law (Chapter 3). Paper XIII test and confirms
the effective inverse power law explanation for the asymmetric dumbbell
model. However, this should also be done for more molecular systems.

C: The revising of the classical Prigogine-Defay ratio supported the con-
jecture of Section 2.2, that van der Waals bonded liquids are strongly
correlating liquids. This raises the question: What other kinds of liq-
uids are strongly correlating? Simulations of the metallic systems Cu
and MgCu exhibit correlation coefficients of RWU = 0.926 (T = 2340 K
and ρ = 125.8 mol/l) and RWU = 0.797 (T = 650 K and ρ = 85 mol/l)
respectively (Paper VIII). The metallic mixture ZrTiCuNiBe has a clas-
sic Prigogine-Defay ratio of Πclassic

pT = 2.4, corresponding to a correlation
coefficient of (Πclassic

pT )−1/2 = 0.65. Simulations and experiments can be
used to clarify if some metallic systems should be included in the class of
strongly correlating liquids.

D: Relaxation of strongly correlating viscous liquids are simpler than that
of viscous liquids in general. This has been demonstrated for relaxation
of thermodynamic quantities like V , E, p, T . It would be interesting if
structural quantities follow the same relaxation. This can be investigated
in simulations. In fact, some preliminary studies (data not shown) of the
Wahnström binary Lennard-Jones liquid suggest that the number of 12
coordinated A particles, NA12 , (Section 6.4) follows the (thermodynamic)
single parameter. If this is the case, it reasonable to refer to the single
parameter as a structural order parameter.
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7. Outlook

E: Let us assume that NA12 follows the (thermodynamic) single parameter.
Recall that 12-coordinated A particles were important for the stability
of the Wahnström binary Lennard-Jones liquid (Section 6.4). Thus, the
single parameter determines how fast the liquid relaxes at a given instant.
This may be related to the so-called internal clock of a viscous liquid
[Olsen et al., 2008].

F: Values of the static NpT response functions of the glass and liquid at
Tg can be found in litterateur for numerous liquids. These values can
not only be used to calculate the classical Progogine-Defay ratio (Table
4.1), but also estimate a γWU -slope (see Subsection 4.1.3 on 40). This
estimated γWU is expected to be equal to γs determined from scaling of
structural relaxation time (Section 4.2).

G: Figure 4.8 (page 45) shows scaling of the radial distribution function of
the Lewis-Wahnström OTP model of two state points with the same Γ.
However, the scaling is not perfect as seen in the inset zooming in on the
first peak. It is speculated that this is due to intramolecular bonds. This
should be investigated further.

H: As discussed in Section 4.1.3, the classical approach of investigating
strongly correlating viscous liquids is approximate. Experimentally mea-
sured frequency dependent or time dependent response function is a more
direct approach. This is an ongoing work of the Glass and Time group.

I: The study of phospholipid membranes demonstrated that strong correla-
tions are present in the slow thermodynamic fluctuations of membranes.
One caveat is that γŪV̄ is not the same for the ordered and the disordered
phase. This should be investigated further.

J: Other complex systems, where slow dynamics can be traced to a van der
Waals bonded region, could have strong thermodynamic correlations (on
some time scale). Proteins could be such systems.

K: Chapter 6 reports crystallization of the Lewis-Wahnström OTP model.
More work is needed to identify the crystal structure (Figure 6.1) and
to undertake a study of the crystallization. A part of this would include
defining an orderparameter. Understanding the crystallization mecha-
nism of this one-component system is interesting: Experimentally, OTP
shows an interesting mechanics for crystallization close to the glass tran-
sition. In the most of the supercooled regime, the growth rate is limited
by molecular diffusion. However, Mapes et al. [2006] have reported that
close to the glass transition crystal growth is not limited by diffusion, but
takes place faster. Apparently, local molecular motion is sufficient for the
crystal to form. It is an open question whether the Lewis-Wahnström
OTP model exhibits such crystallization mechanism.

L: Investigating the crystallization of the Wahnström binary Lennard-Jones
liquid in terms of Frank-Kasper bonds has translated a problem of pack-
ing into a problem of forming a network (Section 6.3). However, more
work should be made on clarifying which clusters leed to crystallisation
and which do not. This investigation may be compared with crystalliza-
tion of network forming liquids.
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Appendix A

Calculations

A.1 Energy-pressure correlations in a soft-sphere liquid

In soft-sphere liquid where particles interact via a inverse power-law potential
1;

Upow
ij = aijr

−n
ij . (A.1)

where rij is the distance between particle i and j, and ai,j ’s and b are constants.
The total potential energy of a system of N particles is

Upow =
N
∑

i>j

Upow
ij (A.2)

The virial is given by

W =
1

3

∑

ih

rijFij (A.3)

where

Fij = − d

dr
Uij = naijr

−n
ij (A.4)

is the force between particle i and j. Thus, virial is proportional to potential
energy,

W pow(t) = γpow
WUUpow(t), (A.5)

with a proportionality constant of

γpow
WU = n/3. (A.6)

A.2 Fitting inverse power-law to the generalized

Lennard-Jones potential

At distance rs (rs < 1) we can fit and inverse power-law plus a constant,

Upow
ij = ar−p + c, (A.7)

1Note that we here uses index ij on the prefactor aij for the sake of generality. So perfect
correlation goes for a poly-disperse system as well as a mono-disperse.
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A. Calculations

to the generalized Lennard-Jones potential (having a global minimum of −1 at
r = 1),

ULJ
ij = (nr−m − mr−n)/(m − n), (A.8)

by matching pair energy (Uij), virial (Wij = −r d
dr Uij) and hyper-virial (Xij =

−r d
dr Wij). First, put

XLJ
ij (rs)

WLJ
ij (rs)

=
Xpow

ij (rs)

Wpow

ij (rs)
and isolate the exponent,

p = (mr−m
s − nr−n

s )/(r−m
s − r−n

s ). (A.9)

Then put WLJ
ij (rs) = W pow

ij (rs) and isolate the pre-factor,

a = mn(r−m
s − r−n

s )/[(m − n)pr−p
s ]. (A.10)

Finaly put ULJ
ij (rs) = Upow

ij (rs) to get the constant,

c = (nr−m
s − mr−n

s )/(m − n) − ar−p
s . (A.11)

If p is known and not rs, then isolate rs from equation A.9,

rs = [(n − p)/(m − p)]1/(n−m). (A.12)

The inverse power-law fitted to the standard Lennard-Jones potential (with
m = 12 and n = 6) at the characteristic distance rs = 2−1/6 where ULJ

ij (rs) = 0
is

Upow
ij =

1

6
r−18 +

4

3
. (A.13)

Rescaling the Lennard-Jones potential to get the minimum to 21/6 (r′ = 21/6r)
we get

Upow
ij =

4

3
r′−18 +

4

3
(A.14)

shown on Figure 3.1 page 20.
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