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Abstract

This philosophiæ doctor thesis has thirteen companion papers. The major part
is a theoretical and simulation study of a class of liquids referred to as strongly
correlating liquids. However, one chapter is dedicated to a study of thermodynamic
fluctuations of simulated phospholipid membranes, and another to a simulation study
of crystallization of a binary mixture. The thesis also includes a short introduction
to supercooled viscous liquids and molecular dynamics simulations. The final chapter
is an outlook. The conclusions are as follows:

A class of model liquids exhibit strong correlation in the thermal fluctuations of
the virial and potential energy at constant volume. The origin of the correlation is
explained for the Lennard-Jones liquid. The pair energy can to a good approxima-
tion be replaced by an inverse power-law plus a linear term. At constant volume
only the inverse power-law gives a contribution to fluctuations, thereby explaining
the correlation. Two quantities characterize a strongly correlating liquid: i) A cor-
relation coefficient, R, that determine the degree of correlation and ii) a slope, γ,
that determine the proportionality between virial and potential energy. If the corre-
lation coefficient is close to unity the liquid is strongly correlating and 3γ equals the
exponent of the inverse power-law.

For viscous liquids, the correlation coefficient equals the inverse square-root of a
Prigogine-Defay ratio defined from three response functions. Also the slope can be
determined from response functions. Literature values of the classical Prigogine-Defay
suggests that van der Waals bonded liquids in general are strongly correlating.

Strongly correlating viscous liquids are more simple than viscous liquids in general:
i) Slow dynamics are determined by a single relaxing parameter. Thus, time- and
frequency-dependent response functions of a given ensemble are proportional. ii) Scale
invariance is inherited from soft-sphere liquids though the effective inverse-power law.
Thus, state points with the same value of ργ/T have the same scaled structure and
dynamics. These conclusions are verified in simulations.

Slow thermal fluctuations of volume and energy of simulated phospholipid mem-
branes are strongly correlated. The origin of the strong correlation can be traced to
the van der Waals bonded core of the membranes and, thus, have the same origin as
simple strongly correlating liquids.

The last part of the thesis reports crystallization into the MgZn2 Laves phase of
the binary Lennard-Jones mixture suggested by Wahnström [1991]. The crystalliza-
tion mechanism from the supercooled melt is investigated in detail.
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Abstract in danish:
Denne philosophiæ doctor afhandling er ledsaget af tretten artikler. Hoveddelen

er et teoretisk og simulerings studie af en klasse af væsker refereret til som stærkt ko-
rrelerede væsker. Dog er et kapitel dedikeret til et studie af termiske fluktuationer af
simulerede phospholipidmembraner, og et kapitel til et simuleringstudie af krystallis-
ering af en binær blanding. Afhandlingen inkluderer også en kort introduktion til
underafkølede viskøse væsker samt molekyledynamik simuleringer. Det sidste kapitel
omhandler fremtidige undersøgelser. Følgende er konkluderet:

En klasse af modelvæsker udviser ved konstant volumen en stærk korrelation i de
termiske fluktuationer af virial og potentiel energi. Korrelationens ophav er forklaret
for Lennard-Jones væsken. Parenergien kan med god tilnærmelse erstattes med en in-
vers potensfunktion plus et lineært led. Ved konstant volumen er det kun den inverse
potensfunktion som giver bidrag til fluktuationer, og derved forklarer korrelationen.
To størrelser karakteriserer en stærkt korreleret væske: i) En korrelationskoefficient,
R, som bestemmer graden af korrelation og ii) en hældning, γ, som bestemmer pro-
portionaliteten mellem virial og potentiel energi. Hvis korrelationskoefficienten er
tæt på én, er væsken stærkt korrelerende og 3γ er lig med eksponenten af den inverse
potensfunktion.

For viskøse væsker er korrelationskoefficienten lig med den inverse kvadratrod af
en Prigogine-Defay kvotient defineret ud fra tre responsfunktioner. Hældningen kan
også bestemmes ud fra responsfunktioner. Værdier af den klassiske Prigogine-Defay
kvotient fra litteraturen indikerer, at van der Waals væsker i almindelighed er stærkt
korrelerede.

Stærkt korrelerede viskøse væsker er simplere end viskøse væsker i almindelighed:
i) Langsom dynamik er styret af en enkelt relakserende parameter. Derved er de tids-
og frekvensafhængige responsfunktioner for et givet ensemble proportionale. ii) Ska-
leringsinvarians af soft sphere-væsker nedarves gennem den inverse potensfunktion.
Derfor har tilstande med samme værdi af ργ/T den samme skallerede struktur og
dynamik. Simuleringer bekræfter disse konklusioner.

Simulerede phospholipidmembraners langsomme termiske fluktuationer af volu-
men og energi er stærkt korrelerede. Forklaringen på den stærke korrelation skal
findes i den indre van der Waalske del af membranen. Derved er oprindelsen den
samme som for de stærkt korrelerede simple væsker.

Den sidste del af afhandlingen beretter om krystallisering ind i MgZn2 Laves-fasen
af den binære Lennard-Jones blanding foreslået af Wahnström [1991]. Mekanismen
for krystallisering af den underafkølede smelte er undersøgt i detaljer.
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Preface

This is the philosophiæ doctor (Ph.D.) thesis of Ulf Rørbæk Pedersen. The
Ph.D. was initiated February 1st 2006 and the thesis was submitted January
30th 2009, thus lasting the three years of the Danish Ph.D. program.

The thesis have thirteen companion papers (listed below). The purpose of
the thesis is to guide the reader though these papers. The reader will, however,
have to consult the papers to get the full story. Also, parts of the thesis goes
beyond the papers.

Papers

Companion papers are listed below and reprinted in Appendix B.

Paper I: Niels L. Ellegaard, Tage Christensen, Peder Voetmann Christiansen,
Niels Boye Olsen, Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C. Dyre
(2007) Single-order-parameter description of glass-forming liquids: A one-
frequency test. J. Chem. Phys 126, 074502

Paper II: Ulf R. Pedersen, Nicholas P. Bailey, Jeppe C. Dyre, Thomas B.
Schrøder (2007) Crystallization of the Wahnström Binary Lennard-Jones
Liquid. arXiv:0706.0813

Paper III: Ulf R. Pedersen, Nicholas P. Bailey, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Strong pressure-energy correlations in van der Waals liquids.
Phys. Rev. Lett. 100, 015701

Paper IV: Ulf R. Pedersen, Tage Christensen, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Feasibility of a single-parameter description of equilibrium
viscous liquid dynamics. Phys. Rev. E 77, 011201

Paper V: Ulf R. Pedersen, Günther H. Peters, Thomas B. Schrøder, Jeppe
C. Dyre (2008) Volume-energy correlations in the slow degrees of freedom
of computer-simulated phospholipid membranes. AIP Conf. Proc. 982,
407-409

Paper VI: Nicholas P. Bailey, Tage Chistensen, Bo Jakobsen, Kristine Niss,
Niels Boye Olsen, Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C. Dyre
(2008) Glass-forming liquids: one or more ’order’ parameters? Journal
of physics-condensed matter 20, 244113

Paper VII: Thomas B. Schrøder, Ulf R. Pedersen, Jeppe C. Dyre (2008)
Density scaling in a strongly correlating viscous liquid. arXiv:0803.2199
[cond-mat.soft]
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Paper VIII: Nicholas P. Bailey, Ulf R. Pedersen, Nicoletta Gnan, Thomas B.
Schrøder, Jeppe C. Dyre (2008) Pressure-energy correlations in liquids.
I. Results from computer simulations. J. Chem. Phys. 129, 184507

Paper IX: Nicholas P. Bailey, Ulf R. Pedersen, Nicoletta Gnan, Thomas B.
Schrøder, Jeppe C. Dyre (2008) Pressure-energy correlations in liquids.
II. Analysis and consequences. J. Chem. Phys. 129, 184508 (2008)

Paper X: Ulf R. Pedersen, Günther H. Peters, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Computer simulations of phospholipid-membrane thermody-
namic fluctuations. arXiv:0811.3317 [physics.bio-ph]

Paper XI: Søren Toxvaerd, Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C.
Dyre (2008) Stability of supercooled binary liquid mixtures. arXiv:0811.1117v1
[cond-mat.soft]

Paper XII: Ulf R. Pedersen, Thomas B. Schrøder, Jeppe C. Dyre (2008) Ter-
miske fluktuationer — er der noget nyt under Solen? (in danish) Kvant:
Tidskrift for fysik og astronomi 16(4), 26-29. Dec 2008

Paper XIII: Thomas B. Schrøder, Ulf R. Pedersen, Nicholas Bailey, Søren
Toxværd, Jeppe C. Dyre (2008) Hidden scale invariance in molecular van
der Waals liquids: A simulation study arXiv:0812.4960v1 [cond-mat.soft]

Oral and poster presentations

Results of this thesis have also been presented at the following conferences and
meetings.

Oral presentations:
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Jones liquid. Presented at Viscous Liquids and the Glass Transition VI
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Søminestationen 2006 A tumbling model of toluene. Presented at Viscous
Liquids and the Glass Transition V [Søminestationen, Holbæk, Denmark,
May 26-28, 2006].

Poster presentations:

Kyoto 2008 Density scaling as a property of strongly correlating viscous liq-
uids and Long-lived structural fluctuations and crystallization of a binary
mixture. Two posters presented at Unifying Concepts in Glass Physics
IV (UCGP2008) [Kyoto, Japan, November 25-28 2008].

vi



Acknowledgments

Sitges 2008 Equilibrium fluctuations of volume and energy of simulated phos-
pholipid membranes. Presentedat the XXI Sitges Conference on Statis-
tical mechanics: Statistical Mechanics of Molecular Biophysics [Sitges,
Barcelona, Spain, June 2-6, 2008].

Andalo 2008 Long-lived structural fluctuations and crystallization of a bi-
nary Lennard-Jones mixture. Presented at XI International Workshop
on Complex Systems [Andalo, Italy, March 17-20, 2008].

Sendai 2007 Volume-energy correlations in the slow degrees of freedom of
phospholipid membranes. Presented at the 5th International Workshop
on Complex Systems [Sendai International Center, Sendai, Japan, Septem-
ber 25-28, 2007].

Holderness 2007 Strong pressure-energy correlations in model liquids. Pre-
sented at The Physics and Chemistry of Liquids (Gordon Conference)
[Holderness School, New Hampshir, July 29 - August 3, 2007].

Pisa 2006 The dynamical Prigogine-Defay ratio: Is the glass transition con-
trolled by one or more order-parameters? Presented at IV Workshop on
Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amor-
phous Materials [Pisa, Italy, September 17-22, 2006].

Nyborg Strand 2006 Molecular Dynamic Simulations of Viscous Toluene.
Presented at the Danish Physical Society Annual Meeting [Nyborg Strand
Hotel, Denmark, June 1-2, 2006].

Acknowledgments

This Ph.D. was financed by the Danish National Research Foundation Center
for Viscous Liquids Dynamics “Glass and Time”.

First, I would like to thank the members of “Glass and Time” group: Jon
Papini, Ditte Gundermann, Tina Hecksher, Nicolette Gnan, Claudio Maggi,
Albena Nielsen, Ib Høst Pedersen, Torben Rasmussen, Ebbe Hyldahl Larsen,
Preben Olsen, Elin Emborg, Heine Larsen, Brian Igarashi, Neslihan Saglanmak,
Bo Jakobsen, Nicholas P. Bailey, Kristine Niss, Søren Toxværd, Thomas B.
Schrøder, Tage Christensen, Niels B. Olsen, and Jeppe C. Dyre. It has been
nice to experience the expansion of the group with more clever heads. A special
thanks is given to Heine Larsen for managing computers and Elin Emborg for
practical matters. I would like to thanks everybody at IMFUFA for providing
a pleasant working environment. A special thank is given to Jørgen Larsen for
helping with questions related to statistics.

I would like to thank Henning Osholm Sørensen for help with identifying
the crystal structure of the Wahnström binary Lennard-Jones mixture.

The study of phospholipid membranes was done in collaboration with Gün-
ther H. Peters who is an expert in simulations of phospholipid membranes.
Simulations of phospholipid membranes were performed at the Danish Center
for Scientific Computing at the University of Southern Denmark. Also thanks
to Richard M. Venable for kindly providing a configuration of an ordered mem-
brane.

vii



Preface

In March-April 2007 I spent one month visiting the Francesco Sciortino
group at La Sapienza in Rome. I would like to thank them for the hospitality
and nice discussions.

In September-November 2007 I visited Peter Harrowell at the School of
Chemistry at the University of Sydney, where I also had the pleasure to meet
Toby Hudson and Asaph Widmer-Cooper. I really enjoyed the enlightening
discussion and warm humor of the Aussies. The study of the crystallisation
of the Wahnström binary Lennard-Jones liquid is done in collaboration with
Peter Harrowell.

Before handing in the thesis Nicolas P. Bailey and Thomas B. Schrøder
read all of the thesis and gave many useful comments and suggestions.

Finally I would like to thank the International Earth Rotation Service for
giving an extra second after Jan 1st 00:59:59 2009. In the final phase of writing
a thesis some extra time is always welcome.

viii



Contents

Preface v
Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Oral and poster presentations . . . . . . . . . . . . . . . . . . . . . . vi
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Contents ix

1 Introduction 1
1.1 Supercooled viscous liquids . . . . . . . . . . . . . . . . . . . . 1
1.2 Molecular dynamics simulations . . . . . . . . . . . . . . . . . . 4

1.2.1 Simulated systems . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Strongly correlating liquids 13
2.1 An example: The Lennard-Jones Liquid . . . . . . . . . . . . . 13
2.2 A class of strongly correlating liquids . . . . . . . . . . . . . . . 17
2.3 Supercritical Argon . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Origin of strong correlations 19
3.1 Effective inverse power-law pair potential . . . . . . . . . . . . 19
3.2 Approximate inverse power-law plus linear term pair potential . 24
3.3 Low temperature limit of crystal . . . . . . . . . . . . . . . . . 25
3.4 Weeks-Chandler-Andersen . . . . . . . . . . . . . . . . . . . . . 26

4 Strongly correlating viscous liquids 29
4.1 A single order-parameter of viscous liquids . . . . . . . . . . . . 29

4.1.1 Dynamic Prigogine-Defay ratio, Λ(ω) . . . . . . . . . . 30
4.1.2 Connecting Progogine-Defay ratio to a correlation coef-

ficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Rethinking the classical Prigogine-Defay ratio . . . . . . 40

4.2 Hidden scale invariance . . . . . . . . . . . . . . . . . . . . . . 41

5 Volume-energy fluctuations of phospholipid membranes 49
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 A simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Stability of a binary mixture 59
6.1 The Wahnström binary Lennard-Jones mixture . . . . . . . . . 59
6.2 The crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



Contents

6.3 Mechanism of crystallization . . . . . . . . . . . . . . . . . . . . 62
6.4 Long-lived structural fluctuations stabilizing the liquid . . . . . 67
6.5 Kob-Andersen binary Lennard-Jones mixture . . . . . . . . . . 72

7 Outlook 75

Bibliography 77

A Calculations 87
A.1 Energy-pressure correlations in a soft-sphere liquid . . . . . . . 87
A.2 Fitting inverse power-law to the generalized Lennard-Jones po-

tential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Papers 89
B.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.7 Paper VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.8 Paper VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.9 Paper IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.10 Paper X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.11 Paper XI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.12 Paper XII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.13 Paper XIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

x



Chapter 1

Introduction

The purpose of this chapter is to give a short introduction to the field of
supercooled viscous liquids (Section 1.1) and molecular dynamics simulations
(Section 1.2). Section 1.3 gives an outline of the remainder of the thesis.

1.1 Supercooled viscous liquids

Imagine we are cooling a liquid as shown in Figure 1.1. Below some temperature
Tm the free energy per particle of the crystal µcry becomes lower than that of
the liquid µliq. According to thermodynamics, the molecules should now form
a crystal to lower the free energy. However, making this experiment, in a
computer or in the laboratory, the crystal might first form below Tm or never.
The liquid is said to be supercooled at T < Tm.

To get insight on supercooling, recall classical nucleation theory in its sim-
plest form [Volmer and Weber, 1926, Becker and Doring, 1935]. Imagine that
for some reason a spherical crystallite had actually formed in the liquid at
T < Tm. Let Nc be the number of particles, rc the radius and ρc = Nc

4
3πr

3
c

the density of the crystallite. The stability of this crystallite is given by the
Gibbs free energy G relative to the liquid. Bulk particles in a crystalline en-
vironment will give a negative volume contribution; Gvol = − 4

3πr
3
cρc∆µ where

∆µ = µliq − µcry. However, the solid-liquid surface tension γ∞ will give a
positive surface contribution; Gsurf = 4πr2

cγ∞, thereby destabilizing the crys-
tallite. Surface area scales as r2

c and volume as r3
c , so if the crystallite is big

enough, the negative volume contribution dominates and the crystallite will
grow; ∂

∂rc
∆G < 0 for large rc where ∆G = Gsurf + Gvol. However, at some

critical size the surface contribution and the volume contribution will balance
out. ∂

∂rc
∆G = 0, when

r∗c =
2γ∞
ρc∆µ

and ∆G∗ =
16πγ3

∞
3ρ2
c(∆µ)2

(1.1)

Crystallites smaller than r∗c are unstable. The crystallite leading to crystal-
lization is referred to as the critical nucleus. Remember that ∆µ(Tm) ≡ 0 by
definition, thus, the size r∗c and barrier height ∆G∗ of the critical nucleus is
infinitely large at the melting temperature. Therefore all liquids can be su-
percooled since all crystallites are unstable at Tm. If we wait long enough at
T < Tm a thermal fluctuation will eventually form the critical nucleus and the

1



1. Introduction

Figure 1.1: Volume of Selenium in different phases. At cooling rates of 0.5
degree per minute and 0.005 degree per minute crystallization is avoided. At
these cooling rates, nothing special is observed when passing the melting tem-
perature at Tm = 220 ℃. Note the change of slope at temperature TF1 and
TF2 enlarge on the upper inset. This is a result of a glass transition. The figure
is reprinted from Reference [Dyre, 2006], however, the original figure is from
Reference [Owen, 1985] with data from Dzhalilo and Rzaev [1967].

liquid will find its true equilibrium state. However, in the time of an experi-
ment or simulation this might never occur. Therefore, the liquid is said to be
in a metastable equilibrium since the liquid behaves as if it was in a true equi-
librium. It should be noted that classical nucleation theory is only adequate
close to Tm [Debenedetti, 2006].

Now, consider a liquid where crystallization do not occur. As the thermal
energy is lowered it becomes more difficult for particles to overcome energy
barriers associated with flow events. The liquid becomes highly viscous. If
we disturb the system it will take some time for the liquid to find its new
(metastable) equilibrium state, characterized by a structural relaxation time
τα. At some temperature1, referred to as the glass transition temperature
Tg, τα will become longer than the time-scales of the experiment or computer
simulation. Structure cannot relax, and the liquid falls out of (metastable)
equilibrium. The liquid is now in a so-called glassy state as shown in Figures

1To make Tg well-defined, it is often defined as τα(Tg) = 100 seconds. Here we will
loosely define Tg as the temperature where we cannot bring the system to its (metastable)
equilibrium state.

2



Supercooled viscous liquids

Figure 1.2: Logarithm of viscosity as a function of inverse temperature for
several liquids. A straight line in this plot corresponds to an Arrhenius law,
Equation 1.2. Tg is defined as η(Tg) = 1012 Pa·s. According to the Maxwell
model [see Dyre, 2006], the relaxation time is given by τα = η/G∞. If as-
suming that the instantaneous shear modulus G∞ is constant, then viscosity
is proportional to the relaxation time, τα(T ) ∝ η(T ). Note that some liquids,
like SiO2, follows the Arrhenius law to a good approximation, while others,
like o-terphenyl (OTP), have a significant non-Arrhenius growth of structural
relaxation. See also Figure 1.8. This figure is originally from Reference [An-
gell, 1985] (data of heat-capacity is removed from original figure for clarity)
and reprinted from [Dyre, 2006].

1.1. The solid glass is different from the solid crystal, since the structure is not
ordered, but has inherited the disordered structure of the liquid.

Let us take a look at the temperature dependency of τα. In a situation
where there is only one energy barrier EA, the relaxation time would follow an
Arrhenius law [Debenedetti and Stillinger, 2001]

τα(T ) = τ0 exp
(−EA
kBT

)
. (1.2)

Figure 1.2 shows (a measure of) relaxations times as a function of inverse tem-
perature for a broad collection of liquids. Structural relaxation of some liquids,
like the covalent bonded SiO2, follow this equation to a good approximation.
Presumably, EA is related to breaking bonds needed for flow. Others liquids,

3



1. Introduction

like the van der Waals bonded o-terphenyl (OTP), have a more dramatic in-
crease of τα. Apparently, the energy barriers for this kind of liquids increase
as the liquid is cooled; ∂

∂(1/T )EA(T ) > 0. Many theoretical descriptions even
predict a divergence of EA(T ) at some finite temperature T0. Experimental
data, however, neither confirms nor rejects such a divergence [Hecksher et al.,
2008]. Generally, changing volume V will also influence τα, so we should write
τα(V, T ). Explaining the non-Arrhenius behavior of fragile liquids is one of the
great puzzles of viscous liquids [Dyre, 2006].

Another great puzzle of viscous liquids relates to how various quantities
relax to equilibrium after a disturbance. Let ∆A(t) = A(t)−〈A〉 be the distance
to equilibrium of some observable like internal energy, pressure or volume.
Again, consider a simple situation where the liquid only have to overcome a
single energy barrier to relax. In this scenario relaxation would be exponential,

∆A(t) = A0 exp
(
− t

τα

)
(1.3)

However, virtually no liquids behave this way suggesting some distribution of
energy barriers.

The studies presented in this thesis utilize molecular dynamics simulations
of supercooled viscous liquids. An introduction to this is given in the following
section.

1.2 Molecular dynamics simulations

Computers can make an incredible amount of repetitive calculations. For this
reason, computational methods play an important role in the field of condensed
matter. A popular method is molecular dynamics simulations [ten Wolde and
Frenkel, 1998, Allen and Tildesley, 1987]. To illustrate the basic concept of this
method, imagine that we want to simulate a liquid of Argon atoms. Our first
assumption will be that dynamics can be described using classical mechanics.
Next, we need some model of forces between atoms, referred to as the force-
field. For simplicity we will assume that Argon atoms only interact pairwise
with a force Fij(rij), where rij is the distance between particle i and j. Imagine
we have a box with N particles. We need to consider what to do with the walls
of the box. We could put some repulsive interactions at the walls, however,
then we would be investigating a liquid close to a wall. For a better simulation
of bulk properties we can make use of periodic boundaries as illustrated in
Figure 1.3. The result is that there is no wall, although, due to the limited size
of the system, there can still be finite size effects.

From an initial configuration of positions and velocities we can integrate
the classical equations of motion numerically. A numerical integration consists
of a simple repetitive calculation and is therefore ideal for computers. There
are numerous algorithms for numerical integrations. A crucial choice is the size
of numerical time step, dtstep. A large time-step is be preferable, since we are
interested in long times. The fastest vibrations, however, set an upper limit
for the time step. The longest times of the simulation is determined by the
available computer power and the complexity of the system. At present day, a
system of 1000 particles can be investigated in a time-window of 10−14 seconds
to 10−4 seconds (Figure 1.7).

4



Molecular dynamics simulations

Figure 1.3: Illustration of four particles confined in a box with periodic bound-
aries. Image boxes are displayed with dashed lines.

In a simulation as presented here the number of particles, volume and to-
tal energy are constant. Thus, such a simulation is of the NV E ensemble.
Algorithms2 have been developed to keep temperature and/or pressure con-
stant, making NV T and NpT simulations possible. In long-time simulations a
thermostat is preferable since numerical errors make the total energy drift in
NV E.

Before we can preform an actual simulation we need to specify a force-field.
In the following we will think in terms of pair energy, Uij(r). This is just an
other way of writing the force. It is natural to chose to have zero energy at
rij =∞ and therefore Uij(r) =

∫∞
r
Fij(r)dr.

Now, let us think of a good expression for Uij(r). Recall that “induced
dipole”-“induced dipole” attraction, known as London dispersion forces, act
between all atoms [Atkins and de Paula, 2002, or a similar standard textbook].
The pair energy associated with this is ULondon

ij ∝ −r−6. Bringing two atoms
close together will result in a repulsion since electron-clouds cannot overlap.
For this we should choose some function with a steep divergence at r = 0.
Traditionally U rep

ij ∝ r−12 is used. Putting this together we obtain the so-
called Lennard-Jones potential [Lennard-Jones, 1931],

ULJ
ij (r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
. (1.4)

We will refer to this as the Lennard-Jones liquid. Note that ε defines the
energy scale, σ the length scale and unit of mass is defined by the mass m of
the particles. Dimensionless versions of physical quantities can be defined from
these three. As an example, a dimensionless time can be defined as

t′ = t

√
ε

mσ2
(1.5)

Some good values for Argon are ε = 0.997 kJ/mol, σ = 0.34 nm and m = 39.95
u [van der Spoel et al., 2006]. Using this we have t = t′2.15 ps.

2In the simulations presented in this theses, the Nosé-Hoover thermostat [Nosé, 1984,
Hoover, 1985] and the Nosé-Hoover Langevin barostat [Feller et al., 1995] are used.
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1. Introduction

Figure 1.4: Pair potentials of two binary Lennard-Jones mixture; the parame-
ter suggested by Wahnström [1991] and Kob and Andersen [1994]. The pa-
rameters for the Wahnström mixture are σBB = 1.2σAA, σAB = 1.1σAA,
εAA = εAB = εBB , mB = 2mA and NA = NB = 512 (χB = 0.5) in a
volume V = (11.094σAA)3. The parameters for the Kob-Andersen mixture are
σBB = 0.88σAA, σAB = 0.80σAA, εBB = 0.5εAA, εAB = 1.5εAA, mA = mB ,
NA = 800, NB = 200 (χB = 0.2) in a volume V = (9.4σAA)3. The Kob-
Andersen mixture is by far the most well-studied.

The Lennard-Jones liquid can easily form a (defected) face center cubic
crystal and it has limited use in the study of supercooled viscous liquids since
crystallization will occur before it becomes viscous. Clarke [1979] did, however,
investigate the glass transition. Crystallization can be avoided by make more
complicated models. It is desirable to keep models as simple as possible, so
they are computationally cheap. The following subsection briefly describes the
models investigated in this thesis.

1.2.1 Simulated systems

Below is a list of models I have simulated. Where nothing else is noted, simula-
tions where preformed using the Gromacs software package [van der Spoel et al.,
2006]. Analysis of the trajectories where done using the Gromacs software pack-
age, home-made Octave scripts [http://www.gnu.org/software/octave/] and
home-made FORTRAN90 code. Pictures of configurations are made using
VMD [Humphrey et al., 1996] assisted with home-made code.

Lennard-Jones liquid: 864 Lennard-Jones particles.

Kob-Andersen binary Lennard-Jones mixture: 800 type A and 200 type
B Lennard-Jones particles. The parameters for the three kinds of pair

6



Molecular dynamics simulations

Figure 1.5: The chemical structure of o-terphenyl (OTP), C6H4(C6H5)2, and a
representation of the model suggested by Lewis and Wahnström [1994] where
circles represent Lennard-Jones particles. The Lennard-Jones parameters are
ε = (600 K)kB , σ = 0.483 nm and m = 76.768 u. The center of the Lennard-
Jones particles are located in the corners of rigid isosceles triangle with two
sides of length σ and one angle of 75°.

Figure 1.6: The potential energy in different phases of the Wahnström binary
Lennard-Jones liquid at χB = 1/3. Note that traditionally the χB = 1/2
composition is simulated (see Figure 1.4). See Chapter 6 and Paper II for
more about the stability of this mixture. Note that the phenomenology is the
same as seen in Figure 1.1 for Selenium. Similar phenomenology is found for
liquids in general.
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1. Introduction

Figure 1.7: Mean square displacement, 〈(∆r(t))2〉 = 〈(|~r(t) − ~r(0)|)2〉, of A
and B particles of the Kob-Andersen binary Lennard-Jones mixture. At ultra
short times particles have not “felt” each other, and displacements are ballistic,
〈(∆r(t))2〉 = (vmt)2 where vm is the root mean square velocity. At long-times
displacements become diffusive, 〈(∆r(t))2〉 = 6Dt, where D is the diffusion
constant. At low temperatures, T < 0.5, particles become “caged” in the
intermediate region.
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Molecular dynamics simulations

Figure 1.8: Reduced inverse diffusion constant (D∗)−1 =
D−1(N/V )−1/3(kBT/m)1/2 as a function of inverse temperature in a
simulation of the Lewis-Wahnström model of OTP. (D∗)−1 relates to some
characteristic “diffusion” time. A straight line in this plot corresponds to an
Arrhenius law, Equation 1.2. Note that at high temperature (D∗)−1 follows
an Arrhenius law, but not at lower temperature. A non-Arrhenius behavior at
low temperature is also found for experimental data of OTP (see o-terphenyl
(OTP) in Figure 1.2).

energies, ULJ
AA(r), ULJ

BB(r), ULJ
AB(r), are σBB = 0.88σAA, σAB = 0.80σAA,

εBB = 0.5εAA, εAB = 1.5εAA. The pair potentials are shown in Figure
1.4. This model was suggested by Kob and Andersen [1994] and is one
of the most well-studied model viscous liquids.

Wahnström binary Lennard-Jones mixture: 500 type A and 500 type B
Lennard-Jones particles with the interaction parameters σBB = 1.2σAA,
σAB = 1.1σAA, εAA = εAB = εBB and masses mB = 2mA. The pair
potentials are shown in Figure 1.4. This model was suggested by Wahn-
ström [1991].

Lewis-Wahnström OTP model: Lewis and Wahnström [1994] suggested to
connect three identical Lennard-Jones particles with rigid bonds as a toy
model of o-terphenyl (OTP). The LINCS algorithm [Hess et al., 1997] is
used for making rigid bonds (in all the models). See Figure 1.5 for more
details about this model.

Asymmetric dumbbells: A system of asymmetric dumbbells as a toy model
of toluene, where a phenyl-group, C6H5-, and the methyl-group, -CH3

9



1. Introduction

where represented as Lennard-Jones particles.

Seven-site model of toluene: A model of toluene, C6H5CH3, were CHx
groups (were x is either 0, 1, or 3) are simulated as Lennard-Jones parti-
cles connected by rigid bonds. The UA-OPLS parameter set [Jorgensen
et al., 1984] where used for bond lengths and interaction parameters.

SPC/E water: Three-site model of water suggested by Berendsen et al. [1987].

GROMOS methanol: Three-site model of methanol, CH3OH, where CH3,
O and H are simulated as charged Lennard-Jones spheres. The GROMOS
parameter set [van Gunsteren et al., 1996] was used for bond lengths and
interaction parameters.

Phospholipid membranes: Seven phospholid membranes where simulated
using a modified version of the all-atom CHARMM27 [Foloppe and MacK-
erell, 2000] parameter set. See Chapter 5, References [Pedersen, 2005,
Pedersen et al., 2006, 2007, Sonne et al., 2007], and/or Paper X for more
details. As a part of my master thesis [Pedersen, 2005] I simulated one
of these membranes, however, the simulations presented in this thesis are
conducted by Günther H. Peters (using the NAMD2 program [Kale et al.,
1999]).

Model liquids shows the same phenomenology as real liquids. Figures 1.6 to
1.7 exemplifies this. Figure 1.6 shows the potential energy in different phases
of the Wahnström binary Lennard-Jones mixture. At the investigated cooling
rates of the liquid, crystallization is avoided and a glass transition is observed.
Recall that this is the same phenomenology as shown in Figure 1.1.

Figure 1.7 shows the root mean square displacement 〈(∆r(t))2〉 = 〈(|~r(t)−
~r(0)|)2〉 of particles of the Kob-Andersen Lennard-Jones liquid. At short times
displacements are ballistic and at long times they are diffusive. From this last
part of the curve, the diffusion constant D can be determined, 〈(∆r(t))2〉 =
6Dt. At low temperatures an intermediate plateau appears, where particles do
not move. At T = 0.366 particles are “caged” from 10−12 to 10−7 seconds (in
Argon units).

Figure 1.8 shows the diffusion constant of molecules of the Lewis-Wahnström
OTP model at different temperatures. At high-temperatures, the diffusion
constant follows an Arrhenius law. However, at low-temperatures, diffusion is
clearly non-Arrhenius. This is in good agreement of what is observed for real
OTP as seen in Figure 1.2 (labeled o-terphenyl).

1.3 Outline of thesis

In Chapter 2 it is shown that some model liquids exhibit strong correlations
in the thermal fluctuations of configurational parts of pressure and energy in
the NV T ensemble. Such liquids are referred to as strongly correlating liquids.
Chapter 3 explains the origin of the strong correlation. In Chapter 4 it is
argued, on the basis of the previous chapters, that strong correlating viscous
liquids are more simple than viscous liquids in general. This is exemplified by
the so-called Progogine-Defay ratio being close to unity (Section 4.1), and scale
invariance of structure and dynamics (Section 4.2).
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Outline of thesis

Thermodynamic fluctuations of phospholipid membranes also exhibit strong
correlations. These correlations are reported and explained in Chapter 5.

Chapter 6 reports and investigates crystallization from the melt of some
of the investigated models. Before the presented study, these models had not
been reported to crystallize from the melt. Crystallization of the Wahnström
binary Lennard-Jones liquid is investigated in details.

The final chapter is an outlook.
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Chapter 2

Strongly correlating liquids

Consider a system of N particles in a fixed volume V . Total energy E is a
sum of a kinetic part (kinetic energy) that is only a function of the momenta,
~Q = {~q1, ~q2, . . . , ~qN}, and a configurational part (potential energy) that is only
a function of positions, ~R = {~r1, ~r2, . . . , ~rN};

E( ~Q, ~R) = K( ~Q) + U(~R). (2.1)

In the same way, pressure p is a sum of a kinetic and a configurational part,

p( ~Q, ~R) = NkBT ( ~Q)/V +W (~R)/V, (2.2)

where T ( ~Q) is the instantaneous temperature. W/V and U are the configu-
rational part of pressure and energy respectively. Note that W is in units of
energy. If thermal fluctuations of W and U are strongly correlated in time,
this is referred to as a strongly correlated liquid. The remainder of this chapter
discuss such W -U correlations in model liquids and super critical Argon. The
main references for this chapter are Paper III and Paper VIII.

2.1 An example: The Lennard-Jones Liquid

Probably the most well-studied model liquid is the (single component) Lennard-
Jones liquid, where particles interact pairwise via the Lennard-Jones potential
[Lennard-Jones, 1931]:

ULJij = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)
, (2.3)

where rij is the distance between particle i and j (see also Section 1.2). The
virial of a system of pairwise interactions particles is

W =
1
3

∑
i 6=j

rijFij =
∑
i6=j

Wij (2.4)

where Fij = − d
drUij is the force between particle i and j. It is convenient to

define a pair virial as

Wij = −rij
3

d

dr
Uij . (2.5)
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2. Strongly correlating liquids

Figure 2.1: Instantaneous normalized fluctuations of virial and potential en-
ergy in a single component Lennard-Jones liquid. W (t) and U(t) are strongly
correlated. This figure is the same as Figure 1A in Paper III, but for another
simulation.

For the Lennard-Jones potential this is

WLJ
ij = 8ε

(
2
(
σ

rij

)12

−
(
σ

rij

)6
)
. (2.6)

Figure 2.1 shows a time series of normalized fluctuations (with respect to
the standard deviation σ) of virialW (t) and potential energy U(t) in a constant
NV T simulation at T =0.66 (T = 80 K in Argon units) and ρ = 0.840 (〈p〉 = 0).
Virial and potential energy are strongly correlated. This is quantified by the
correlation coefficient,

RWU ≡ 〈∆W∆U〉√〈(∆W )2〉〈(∆U)2〉 = 0.953, (2.7)

being close to unity.
Figure 2.2 shows a scatter plot of virial versus potential energy for some

more state points. The cigar-form of the scatter-blobs for a given state-point
indicates a strong correlation. Note also the constant density path’s. The slope
of these paths is around 6 (±10%) and the same value as the “slope” of a single
state point defined as

γWU ≡
√
〈(∆W )2〉
〈(∆U)2〉 (2.8)

When pressure is held constant (and not volume), the correlation is weaker.
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A class of strongly correlating liquids

Figure 2.2: Scatter plot of virial and potential energy in a single component
Lennard-Jones liquid at different state points. Simulations where done in the
NV T ensemble. The lower panels show the W -U correlation coefficient RWU

(Equation 2.7), the W -U slope (Equation 2.8) and the average pressure.
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2. Strongly correlating liquids

Figure 2.3: W -U correlation plot of model liquids. The numerator plotted
against the denominator of the correlation coefficient expressed in units of
pressure (making them intensive quantities). The diagonal (dashed line) cor-
respond to perfect correlation. Models of van der Waals bonded liquid are
close to this line showing strong W -U correlations, whereas hydrogen bonded
liquids only have weak or no correlation. The simulated systems are the single
component Lennard-Jones liquids (SCLJ), a model with exponential repulsion
therm (EXP), a asymmetric dumbbell model (DB), model of Toluene using the
UA-OPLS parameters (TOL) [Jorgensen et al., 1984], a model of pure Cu with
a many body potential (CU) [Jacobsen et al., 1987, 1996], a binary mixture
of particles with hard-core repulsion and a square-well attraction (SQW) [Za-
ccarelli et al., 2002, 2004], a binary Lennard-Jones mixture suggested by Kob
and Andersen [1994, 1995a] (KABLJ), a ortho-terphenyl model suggested by
Lewis and Wahnström [1994] (OTP), a single component glass former suggested
by Dzugutov [1992], a model of methanol using the GROMOS parameters [van
Gunsteren et al., 1996], a three-site model of water (SPC/E) [Berendsen et al.,
1987], a model of Mg85Cu15 [Bailey et al., 2004] and a five-site model of wa-
ter (TIP5P) [Mahoney and Jorgensen, 2000]. Simulations of SCLJ and EXP
where conducted by Thomas B. Schrøder. Simulations of CU, DZ and MGCU
where conducted by Nicholas P. Bailey. Simulations of SQW and TIP5P where
conducted by Nicolette Gnan. The remaining simulations where conducted by
the author, see Section 1.2.1. This figure is the same as Figure 10 in Paper
VIII, where simulation details are also given.
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A class of strongly correlating liquids

2.2 A class of strongly correlating liquids

If strong W -U correlations were only present in the Lennard-Jones liquid, they
would not be so interesting. However, other liquids also exhibit strong W -
U correlations. Figure 2.3 show the nominator, 〈∆W∆U〉/(kBTV ), versus
the denominator,

√〈(∆W )2〉〈(∆U)2〉/(kBTV ), of the correlation coefficient,
in units of pressure to make them intensive quantities, of 13 liquids. In this
plot, the diagonal correspond to perfect correlation.

A large group of liquids are strongly correlating. This suggest that there
exist a class of strongly correlating liquids (see Sections 3.1, 4.1.3 and 4.2 for
more about this conjecture). Note that van der Waals bonded liquids belongs to
this class, whereas hydrogen bonded liquids only have weak correlations. The
weakening of correlation can be explained by competing interactions. Close to
the density maximum of waterW and U are uncorrelated, RWU = 0. For more
about this, see section C in Paper VIII.

2.3 Supercritical Argon

An experimental correlation coefficient of super-critical argon can be calcu-
lated1: Recall, that for particles with no internal degrees of freedom kinetic
parts of pressure and energy is simply that of a mono-atomic ideal gas and
that the fluctuation-dissipation theorem relates fluctuations to response func-
tions [Allen and Tildesley, 1987]; For a mono-atomic system we can write

〈(∆U)2〉/kBT 2 = CV − 3
2
NkB , (2.9)

〈(∆W )2〉/kBT = NkBT + 〈W 〉 − V KT + 〈X〉 (2.10)

and
〈∆U∆W 〉/kBT 2 = V βV −NkB . (2.11)

Note, that the so-called “hyper-virial” X [Allen and Tildesley, 1987] goes into
the relation between 〈(∆W )2〉 and KT (Eq. 2.10). X is not a thermodynamic
quantity and cannot be measured.

Fortunately, it is possible to subtract X out of the equations (with some
assumptions), as described in Paper VIII section IIIA. If Tref is the temperature
at some reference state-point (along a constant density path) cconfV = cV −
3
2NkBT , β

conf
V = βV −NkB/V and 〈p〉conf = 〈p〉 − NkBT

V then the correlation
coefficient is given by

RWU '
√
B(T )−B(Tref )
A(T )−A(Tref )

(2.12)

where

A(T ) = 〈p〉 −KT +
〈p〉confβconfV

cconfV

, (2.13)

1There are two reasons for choosing Argon. 1st: A calculations on lighter noble gasses like
Helium should include quantum effects. Here we ignore such quantum effects. 2nd: Heavier
noble gasses is known to form compounds indicating that the Lennard-Jones potential is to
simple (loosely speaking: the large electron cloud of the heavy noble gasses can make covalent
bonds).
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2. Strongly correlating liquids

and
B(T ) = T (βconfV )2/cconfV . (2.14)

Figure 9 in Paper VIII shows experimental data from the NIST database
[Lemmon et al., 2005] of super critical Argon where the diagonal corresponds to
perfect correlation. The correlation is strong with aW -U correlation coefficient
of 0.96. This show that strongly correlating liquids exist in nature and not
just the computer. Equation 2.12 also demonstrate that strongly correlating
liquids are more simple than the general case. If we assume R = 1, a good
approximation for strongly correlating liquids, we can predict a third response
function from two others. This is not the general case.
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Chapter 3

Origin of strong correlations

In this chapter it is shown that the origin of the strong correlation between
virial and energy (in the constant volume ensamble) is a consequence of an
effective inverse power-law of the pair-potential. This power-law describes the
thermodynamical fluctuations of the NVT ensamble. See also Paper III, Paper
VIII and Paper IX. The real pair potential cannot simply be approximated by
an inverse power. This would give a wrong equation of state. However, a good
approximation is an inverse power-law plus a linear term. The linear term does
not contribute (significantly) to fluctuations at fixed volume.

3.1 Effective inverse power-law pair potential

First, consider a soft-sphere liquid [Hoover et al., 1970], where particles interact
via an inverse power-law potential:

Upow
ij = ar−nij , (3.1)

where n is some exponent and a is a prefactor. As shown in Appendix A.1,
potential energy and virial are proportional

W pow(t) = γpowWUU
pow(t), (3.2)

with a proportional constant (or slope) of

γpowWU = n/3. (3.3)

Then, recall that the Lennard-Jones potential is a sum of two inverse power-
laws, where r−12 dominate as short distances. A possible explanation for the
correlations could be that the r−12 term dominate fluctuations. However, this
would give a slope of four, whereas the observed slope is around six. The reason
for this is that particles are located close to the minimum, where both r−12 and
r−6 terms play a role (Paper III, [Ben-Amotz and Stell, 2003]). Note, however,
that the slope in Figure 2.2 does approach four with increasing pressure (where
r−12 dominates).

Fluctuations of virial and potential energy (at constant volume) can be
described by an effective inverse power-law with an exponent larger than 12.
To show this, split the pair energy in an inverse power-law term plus a difference
term,

ULJ = Upow + Udiff. (3.4)
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3. Origin of strong correlations

Figure 3.1: Effective inverse power-law Upow
ij = 4

3r
−18− 4

3 derived in Appendix
A.2. See also Figure 3.5. The definition of the radial distribution function g(r)
is given in Section 3.2.

and
WLJ = W pow +W diff. (3.5)

Then the variance of energy and virial can be written as

〈(∆ULJ)2〉 = 〈(∆Upow)2〉+ 〈(∆Udiff)2〉+ 2〈∆Upow∆Udiff〉, (3.6)

and

〈(∆WLJ)2〉 = 〈(∆W pow)2〉+ 〈(∆W diff)2〉+ 2〈∆W pow∆W diff〉. (3.7)

If an effective inverse power-law gives a good description of the fluctuations
then

∆ULJ(t) ' ∆Upow(t) (3.8)

and
∆WLJ(t) ' ∆W pow(t). (3.9)

To quantify “'” in the above equations, we can investigate the pow-LJ corre-
lation coefficients

RUpow,ULJ ≡ 〈∆ULJ∆Upow〉√〈(∆ULJ)2〉〈(∆Upow)2〉 , (3.10)
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Effective inverse power-law pair potential

Figure 3.2: The panel on the left shows a scatter plot of ∆Upow versus
∆ULJ (Equation 3.4) and the panel on the right shows ∆W pow versus ∆WLJ

(Equation 3.5) of configurations of the Lennard-Jones liquid at T = 0.66 and
ρ = 0.840 (〈p〉 = 0). The effective inverse power-law describes fluctuations of
virial and energy to a good approximation (Equations 3.8 and 3.9).

and

RWpow,WLJ ≡ 〈∆WLJ∆W pow〉√〈(∆WLJ)2〉〈(∆W pow)2〉 (3.11)

and the amount of variance described by the effective power-law,

γ2
Upow,ULJ ≡ 〈(∆U

pow)2〉
〈(∆ULJ)2〉 , (3.12)

and

γ2
Wpow,WLJ ≡ 〈(∆W

pow)2〉
〈(∆WLJ)2〉 . (3.13)

If the description is good, all of these should be close to unity.
As a first guess, we will assume that n = 18 (γ = 6) (as the W -U slope on

Figure 2.1 suggest), and get a pre-factor a by fitting the inverse-power law to the
Lennard-Jones potential by matching 0th, 1st and 2nd derivative as described
in Appendix A.2. This give the inverse power-law Upow

ij = 4
3 (rij/σ)−18 shown

on Figure 3.1. Figure 3.2 shows that this effective inverse power-law gives a
pretty good description of the fluctuations.

In the following, a way to determine the best1 n and a from fluctuations at
one state-point will be given. Figure 3.3 shows Eqs. 3.10–3.13 as a function
of n. In some range (±10%) the power-law energy and virial are strongly
correlated with the Lennard-Jones (RUpow,ULJ > 0.93 and RWpow,WLJ > 0.96)
and dominates the fluctuations (〈(∆ULJ)2〉 ' 〈(∆Upow)2〉 > 〈(∆Udiff)2〉 '
|〈∆Upow∆Udiff〉|). Both virial and energy fluctuations should be described

1best: Effective inverse power-law that gives the best description of the fluctuating parts
of energy and virial.
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3. Origin of strong correlations

Figure 3.3: Eqs. 3.10 to 3.13 as a function of n (using afit) of the Lennard-
Jones liquids at T = 0.66 and ρ = 0.840. The optimization parameter√
RUpow,ULJRWpow,WLJ have maximum, close to n = 18.9 = 3

√
〈(∆W )2〉
〈(∆U)2〉 .

However, note that
√
RUpow,ULJRWpow,WLJ is close to unity in the entire

investigated region. This suggest that a n not exactly 19.8 works pretty
well. Also, note that covariances 〈∆Upow∆Udiff〉/〈(∆Udiff)2〉 = 0.02 and
〈∆W pow∆W diff〉/〈(∆W diff)2〉 = 0.06 are small at exponent n = 18.9.

by the effective inverse power-law (both RUpow,ULJ and RWpow,WLJ close to
unity). Thus,

√
RUpow,ULJRWpow,WLJ should be close to unity. Note that this

optimization parameter have a maximum close to the exponent calculated from
the W - U slope (n = 3γWU = 18.9). Thus, the apparent exponent can simply
be calculated as

n = 3

√
〈(∆W )2〉
〈(∆U)2〉 = 3γWU (3.14)

The prefactor a can also be determined from the W and U fluctuations.
The afit calculated in Appendix A.2 worked pretty well, however, a slight in-
crease give a better fit. Figure 3.4 shows that an 8.8% increase gives the best
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Effective inverse power-law pair potential

Figure 3.4: Eqs. 3.10 to 3.13 as a function of a/afit (n = 18.9) of the Lennard-
Jones liquids at T = 0.66 and ρ = 0.840. T = 80 K and 〈p〉 = 0. At
aopt = 1.088afit = 1.389 (dashed line) the variance of ∆ULJ(t) equals that
of ∆ULJ(t) and the variance of ∆WLJ(t) equals that of ∆WLJ(t). Also, at
aopt the variance of ∆Udiff(t) and ∆W diff(t) and the correlation coefficient
RULJ,Udiff and RWLJ,Wdiff are small.

description. It is possible to match (the magnitude of) both the potential en-
ergy and the virial, 〈(∆Upow)2〉/〈(∆ULJ)2〉 ' 〈(∆W pow)2〉/〈(∆WLJ)2〉 ' 1.
Note that changing a do not effect the correlation coefficients RUpow,ULJ and
RWpow,WLJ .

Figure 3.5 show Upow
ij with exponent n = 18.9 and aopt = 1.088afit = 1.389.

Note that Udiff
ij of this effective inverse power-law is well approximated by a

straight line in the range of the first peak of the radial distribution function,
g(r). This will be discussed further in the next section.

So far it is only demonstrated that the effective power-law works for the
6-12 Lennard-Jones liquid. However, in Paper XIII it is argued that a similar
fitting can be done for the assymetric dumbell model. Coslovich and Roland
[2009] have recently shown that the description also works for the generalized
Lennard-Jones potential, Ugen.LJ

ij = (nr−m −mr−n)/(m− n). It is reasonable
that a similar inverse power-law matching can be done in similar systems.
Therefore, a good conjecture is that the effective power-law explanation works
for van der Waals bonded systems in general. More work is needed to clarify
this.

Note that the Lennard-Jones potential cannot simply be replaced by an
inverse power-law – only fluctuations (at fixed volume) can be described by a
inverse power-law. The Lennard-Jones liquid does not have the same equation
of states as the soft-sphere liquid. In the next section will discuss the role of
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3. Origin of strong correlations

Figure 3.5: The optimal effective inverse power-law of Upow
ij = 1.389r−18.9 −

1.388 of the Lennard-Jones liquid at the state-point T = 0.66 and ρ = 0.840.
n = 18.9 and a = 1.389 are calculated from fluctuations as outline in Figure
3.3 and Figure 3.4. The definition of the radial distribution function g(r) is
given in Section 3.2.

Udiff.

3.2 Approximate inverse power-law plus linear term
pair potential

The effective inverse power-law gives a good description of the pair potential
at short distances, r < rmin(= 1.12σ), but not at longer distances, as shown
on Figure 3.1. At first glance, it is surprising that the effective power-law does
so well after all. Even at zero pressure where particles are located close to the
minimum of the Lennard-Jones potential. In the following, it will be discussed
why Udiff does not contribute to the fluctuations at fixed volume. The whole
system, and not just a single pair, has to be taken into account. See also Paper
IX section II-D.

Define the instantaneous pair distribution function (or radial distribution
function) as2

g(r, t) =
1

2Nρ

∑
i 6=j

δ(r − rij(t)) (3.15)

2δ(x) is Dirac delta function.
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Low temperature limit of crystal

where
g(r) = 〈g(r, t)〉 (3.16)

is the traditional pair distribution function [Allen and Tildesley, 1987]. From
g(r, t) we can calculate the potential energy at time t as

U(t) = (4πρN/2)
∫ ∞

0

Uij(r)g(r, t)r2dr, (3.17)

and
∆U(t) = (4πρN/2)

∫ ∞
0

Uij(r)∆g(r, t)r2dr, (3.18)

where
∆g(r, t) = g(r, t)− g(r). (3.19)

Udiff, shown on Figure 3.1, can be approximated with a linear function in
the first shell regime (first peak of g(r)). The same goes for W diff. The fact
that Udiff is nearly constant, ∆Udiff(t) ' 0, suggests that

4πρN/2
∫
first shell

rij∆g(r, t)r2dr ' 0 (3.20)

or ∫
first shell

rij∆ρb(r, t)r2dr ' 0 (3.21)

where ρb(r, t) = (4πρN/2)∆g(r, t) is the bond density. In other words the
number of bonds in first shell is constant, and the average first shell bond
distance rm(t) =

∫
first shell rρb(r, t)dr is constant. This is reasonable for a dense

liquid in a fixed volume. Whenever a particle moves it will come closer to some
particles and move further away from others – approximately without affecting
rm(t).

If volume is changed we expect an overall change of the bond density, and
Udiff will change. This is why theW−U scatter plot on Figure 2.2 has constant
density paths,

W = γWU (U + U0(ρ)) (3.22)

Here, the argumentation of rm being constant is somewhat imprecise. It
is intuitively reasonable, but the “first shell” integral,

∫
first shell . . . dr, is not

well-defined. The following section discuss a one dimensional crystal where a
clear argumentat can be made. Note, however, that the reasoning is of the
same nature.

3.3 Low temperature limit of crystal

The correlation survives all the way down to the zero temperature limit of
the crystal – even at negative pressure (Figure 4 in Paper IX). This low-
temperature limit can be explained by approximating the pair potential by
a Taylor expansion. In the following we will investigate W -U correlations of a
one-dimensional crystal.

Think of a one-dimensional crystal with only nearest neighbor interactions
(see also Paper IX section II-B-1). Let N be the number of particles in box of
length (or “volume”) L. Make the box periodic so particle N + k is a mirror
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3. Origin of strong correlations

of particle k. The average pair distance will then be a = L/N . For simplic-
ity put a at the minimum of the potential, U ′ij(a = rm) = 0, and shift the
minimum to zero, Uij(rm) = 0. In the low temperature limit we can make a
Taylor expansion of the pair potential, keeping up to the third order in relative
displacement. Define

Sp ≡
N∑
i

(ri,i+1 − rm)p, (3.23)

and write energy as (the third order term of energy is explicitly written here,
since it goes into the second order term of virial)

U =
1
2
k2S2 +

1
6
k3S3 +O(S4), (3.24)

and virial as (see Paper IX for details)

W = −1
3

(k2rmS1 + (k2 +
1
2
k3rm)S2) +O(S3), (3.25)

where kp is the p’th derivative of the pair potential at rm.
The lowest order term of the energy is second order S2. To second order,W

involves both S1 and S2, so apparently there is no W–U correlation. However,
S1 vanishes when volume is fixed: Fixed volume implies that

∑N
i ri,i+1 =

Nrm = L, and S1 =
∑N
i (ri,i+1 − rm) =

∑N
i ri,i+1 −Nrm = 0.

Combining Equations 3.24 and 3.25 (with S1 = 0 and throwing away O(S3))
we recover a W–U correlation,

W = −1
3
k2 + 1

2k3rm
1
2k2

U. (3.26)

For the Lennard-Jones potential (with rm = 21/6σ) the slope is − 1
3

k2+ 1
2k3rm
1
2k2

=
6.33. This is in good agreement with slope found in simulations (see Figure
2.2)3.

The three dimensional crystal is more complicated (see Paper IX section
II-B-2 and II-B-3). Here, the correlation is not exact but the energy-virial
correlation is close to unity (Figure in Paper IX) and slope is close to observed
six.

Again, note the importance of fixed volume. In the one dimensional crystal
the situation is more clear than the effective inverse power-law explanation (and
the three dimensional crystal), but are of the same nature. When one bond
gets shorter an other must get longer. The volume constrain makes linear terms
vanish. That is S1 = 0 or

∫
first peak r∆ρb(r, t)dr ' 0.

3.4 Weeks-Chandler-Andersen

The reader has perhaps noticed the similarities between the apparent inverse
power-law and the celebrated 1971 paper by Andersen, Weeks, and Chandler
[1971] (WCA). These authors argue that molecules of a liquid can be thought

3Traditionally, we think of the low-temperature limit of the crystal as harmonic. However,
for the harmonic crystal (k3 = 0) the slope is −2/3 and not close to six.
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Weeks-Chandler-Andersen

of as hard-core particles (Uhs
ij (r) = ∞ for r < rd and Uhs

ij (r) = 0 elsewhere)
with attraction that can be viewed as a perturbation.

The effective inverse power-law plus a linear term agrees with the WCA
interpretation, that the repulsive region of the pair potential dominates liq-
uid structure – an important result of WCA-paper. However, in the following
chapter it will be demonstrated that an inverse power-law is more useful than
a hard-core description. (One can think of a hard-core interactions as a ap-
proximation to the effective inverse power-law.)
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Chapter 4

Strongly correlating viscous liquids

In this chapter it is demonstrated that strongly correlating viscous liquids are
more simple than viscous liquids in general.

In the first section, it is argued that the glass-transition of strongly cor-
relating viscous liquids is single-parameter in the Prigogine-Defay sense. The
references for this section are Paper I, Paper IV, Paper VI and Paper IX. In ad-
dition, the section give some simple equations to illustrate possible scenarios of
thermodynamic fluctuations and a rethinking of the (classical) Prigogine-Defay
ratio Πclassic.

In the second section it is shown that strongly correlating viscous liquids
have a scale invariant energy landscape. This provides a scaling-law of dynam-
ics (exemplified by the diffusion constant D) and structure (exemplified by the
radial distribution function g(r)). The references for this section are Paper VII
and Paper XIII.

4.1 A single order-parameter of viscous liquids

The classical picture of a single order-parameter description of the glass transi-
tion was developed by Davies and Jones [1953a,b]. In these authors’ picture, an
important number is the so-called Prigogine-Defay ratio [Prigogine and Defay,
1954]. This ratio is calculated from the change of the (static) response function
at the glass-transition. If ∆cp = cliquidp −cglassp is the change of the isobaric heat
capacity per unit volume, ∆κT = κliquidT − κglassT is the change of isothermal
compressibility and ∆αp = αliquidp − αglassp is the change of isobaric expansion
coefficient, then the classical Prigogine-Defay ration is defined as1

Πclassic
pT =

∆cp∆κT
Tg(∆αp)2

. (4.1)

In general Πclassic
pT ≥ 1 and Πclassic

pT = 1 in the single parameter case. Since
then, the topic has been debated in the glass community2. Moynihan et al.

1The superscript “classic” in equation 4.1 is normally not used, but is used here distinguish
it from the later defined Progogine-Defay ratios. The subscript pT is to emphasize that this
ratio relates the natural response functions of the NpT ensemble - the ensemble preferred in
an experimental situation. That is cp, κT and αp.

2See References [Davies and Jones, 1953a,b, DiMarzio, 1974, Goldstein, 1975, Gupta and
Moynihan, 1976, Moynihan et al., 1976, Roe, 1977, Moynihan and Gupta, 1978, Lesikar and
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4. Strongly correlating viscous liquids

[1976] concluded, on the basis of available experimental data, that the ratio
typically takes values of 2 < Πclassic

pT < 4. The conclusion from this is therefore
that in general more than one order-parameter is needed. A collection of ratios
available today are compiled in Table 4.1. Note that some Prigogine-Defay
ratios are infact close to unity. Table 4.1 is discussed in details in Section 4.1.3.

At this point, I have not explained to the reader what exactly is meant by “a
single-order parameter”. The reason for this is that Roe [1977], Moynihan and
Gupta [1978], Moynihan and Lesikar [1981] realized that the classical Prigogine-
Defay ratio is not well-defined. Theoretical predictions solely based on Πclassic

pT

are therefore problematic. The solution to this was a (well-defined) revised
Prigogine-Defay ratio. This ratio relates to the frequency dependent response
functions of the equilibrium liquid (disregarding the crystal) and is defined as

Πlinear
pT =

[cp(ω → 0)− cp(ω →∞)][κT (ω → 0)− κT (ω →∞)]
T [αp(ω → 0)− αp(ω →∞)]2

(4.2)

where ω → ∞ refers to high-, and ω → 0 to the low frequency limit. Unfor-
tunately, it is difficult to get good measurements of wide frequency spectra, as
needed to get these limits. For this reason no-one has attempted to calculate
Πlinear
pT from experimental data (to the author’s knowledge). However, in sim-

ulation this can be done as demonstrated by Nielsen [1999] and in Figure 4.3.
Ellegaard [2005] showed that Πlinear

pT can be re-expressed as a single-frequency
quantity ΛpT (ω) (see following section), more suited for experiments. This is
published in Paper I.

The remainder of this chapter is a newly developed interpretation of “single
parameter”-ness, based on ΛpT (ω). In this interpretation, it is clear what is
meant by “a single parameter”. In the classical understanding it is somewhat
unclear what can be learned from a ratio close to unity but not exactly unity.
In other words: What should a measured value of Πclasic

pT be compared to? Is
Π = 1.2 “significantly larger than unity” as concluded by Takahara et al. [1999]?
It will become clear how we should interpret Πclasic

pT > 1 (Subsection 4.1.3).

4.1.1 Dynamic Prigogine-Defay ratio, Λ(ω)

The dynamic Prigogine-Defay ratio ΛpT (ω) is an one-frequency test quantity
for single parameter-ness. This was published in Paper I, based on the Ph.D.
thesis of Ellegaard [2005]. It is defined from the frequency-dependent response
functions. If cp(ω)′′, κ′′T (ω) and α′′p(ω) are the imaginary parts (at a single
frequency) of isobaric heat capacity per unit volume, isothermal compressibility
and isobaric expansion coefficient respectively, then

ΛpT (ω) ≡ c′′p(ω)κ′′T (ω)
T [α′′p(ω)]2

. (4.3)

It is in principle accessible though experiments, although it has not been mea-
sured yet. It is not at all trivial to measure frequency dependent response
functions. As an example, a resent paper by Christensen et al. [2007] shows
that conventional methods to measure frequency-dependent isobaric heat ca-
pacity cp(ω) fail.

Moynihan, 1980, Moynihan and Lesikar, 1981, Nieuwenhuizen, 1997, 2000, Ellegaard, 2005,
Schmelzer and Gutzow, 2006, Pick, 2008] and Paper VI.
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A single order-parameter of viscous liquids

Table 4.1: Litterateur values of classical Prigogine-Defay ratios.

Material ΠpT Π−1/2
pT Ref.

Pure SiO2 glass 103-2·105 0.03-0.002 a
Glycerol, C3H5(OH)3 9.4 0.33 b
Rubber 8.3 0.33 a
GeO2 6.9±1.3 0.38±0.04 h
16Na2O–10B2O3–74SiO2 4.9 0.45 f
B2O3 4.7 0.46 c/b
0.4Ca·NO3·0.6KNO3 4.5 0.47 c/b
Glucose, OC6H7(OH)6 3.7 0.52 a
16Na2O–10CaO–74SiO2 3.6 0.53 f
Se 2.4 0.65 a/b
Se 2.0 0.71 j
ZrTiCuNiBe 2.4 0.65 e
26Na2O–74SiO2 2.3 0.66 f
Technical glasses 2.0-2.7 0.71-0.61 a
Polyvinylacetate 2.2(1.7) 0.67(0.77) c/b
n-Propanol, C3H7OH 1.9 0.73 b
Polyvinylchlorid, PVC 1.7 0.77 b
Polystyrene, PS 1.3±0.1 (16) 0.88±0.03 (0.25) d
OTP(75%)-TPCM(25%) 1.28 0.88 k
OTP(67%)-OPP(33%) 1.20±0.05 0.92±0.02 d
Polystyrene, PS 1.085 0.96 l
Phenoxy 1.03 0.99 g
Polycarbonate 1.02 0.99 g
Polysulfone 0.96 1.02 g
Polyarylate 0.90 1.05 g
Polyisobutene 0.9 1.05 b

Liquids are listed with decreasing classical Prigogine-Defay ratio. As discussed
in details in Section 4.1.3 this separates van der Waals bonded liquids, with
ratios close to unity, from the rest. References. a: [Nemilov, 1994]; b:
[Donth, 1981]; c: [Gupta and Moynihan, 1976]; d: [Takahara et al., 1999]; e:
[Samwer et al., 1999]; f: [Wondraczek and Behrens, 2007]; g: [Zoller, 1982];
h: [Dingwell et al., 1993]; i: [Hadac et al., 2007]; j: [Berg and Cooper, 1978];
k: Calculated by Ellegaard [2005] using data from Naoki et al. [1986]; l: [Oels
and Rehage, 1977]. Abbreviations: OTP, o-terphenyl: C6H4(C6H5)2; TPCM,
triphenylchloromethane: C(C6H5)3Cl; OPP, o-phenylphenol: C6H4(C6H5)OH;
Polyvinylacetate: [-CH2(COOCH3)CH-]n; Polyvinylchlorid: [-C(ClH)CH2-]n ;
Polystyrene: [-CH(C6H5)CH2-]n; Phenoxy: [-CH2CH(OH)CH2O(C6H4)-
]n ; Polycarbonate: [-C2O(C6H4)C(CH3)2(C6H4)O-]n; Polysulfone:
[-(C6H4)SO2(C6H4)O(C6H4)C(CH3)2(C6H4)O-]n; Polyarylate: [-
CO(C6H4)COO(C6H4)C(CH3)2(C6H4)O-]n.
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4. Strongly correlating viscous liquids

In Paper I it is shown that if Πlinear
pT = 1 then ΛpT (ω) = 1 at any ω. Such

liquids are referred to as “Single parameter liquids”. Moreover, if Λ(ω) is unity
in one ensemble, then it is unity in all ensembles:

1 = ΛpT (ω) = ΛV T (ω) = ΛpS(ω) = ΛV S(ω). (4.4)

This is reasonable since is would be peculiar if “single parameter”-ness was
ensemble dependent. However, if ΛpT (ω) > 1 we cannot say that they are
equal. Nevertheless, if one of the ratios is close to unity, the others are likely
also to be close to unity, as demonstrated in simulations later.

An equivalent way of expressing “single parameter”-ness is3

∆p̄(t) = γpS∆s̄(t) when controlling V and T (4.5)

where the bar indicates fluctuations on some relaxing time-scale. If the relation
is exact, the bar is in principle not needed. Later, however, we will discuss
a situation where these equations are approximate (replacing “=” with “'”).
Then the bar makes a difference. Again, since “single parameter”-ness must be
ensemble independent, it follows that

∆V̄ (t) = γV S∆s̄(t) when controlling p and T, (4.6)

∆p̄(t) = γV T∆T̄ (t) when controlling V and S, (4.7)

and
∆V̄ (t) = γV T∆T̄ (t) when controlling p and S. (4.8)

The equations apply when the controlling parameters are held constant. Then
the free parameters will fluctuate in a correlated manner (on the relaxing time-
scale indicated by the bar). Also, the equations apply to perturbations (in
the linear regime). Then relaxation of the free parameters follows the same
(scaled) function.

Equations 4.5 to 4.8 answer the question: What is the single parameter?
There is only one internal relaxing parameter in the system. Mechanical and
thermal relaxation are slaves of this parameter. It is reasonable to speculate
that other quantities, like dipole-moment, are also slaves of the single parame-
ter. If dipole-moment is a slave, then dielectric measurements would reflect the
“single parameter”-ness. This would make single parameter liquids even more
interesting due to the simplicity.

All of the equations in this subsection (Equations 4.3 to 4.8) are equivalent,
and any of them can be regarded as the definition of a single parameter liquid.
It is easy to show from one of Equations 4.5 to 4.8 that a corresponding ΛXY (ω)
is equal to unity. An example is given in next subsection. Showing it the other
way, that one of Equations 4.5 to 4.8 can be derived from a cooresponding
ΛXY (ω) being unity can also be shown. This is done in Paper I. In the following
we will consider Equations 4.3 to 4.8 as the definition of a single parameter
liquid. ΛXY (ω) = 1 is regarded as a consequence. In future studies this way
of thinking is recommended.

3s = S/V is entropy per unit volume.
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4.1.2 Connecting Progogine-Defay ratio to a correlation
coefficient

Single parameter liquids and strongly correlating viscous liquids are related
as discussed in the following. The inverse square-root of the Progogine-Defay
ratio equals some correlation coefficient.

This will be demonstrated in the constant V T ensemble. To keep tem-
perature constant, entropy has to be transferred between a heat-bath and the
sample: ∆S(t) = ∆q(t)/T where q is heat. Since the volume is constant (no
p∆V work) this heat is seen in the sample as a change of the total energy ∆E
and therefore ∆E(t) = T∆S(t). Since we will relate this to computer simu-
lations, where total energy is easy to access, we will write energy instead of
entropy.

If c′′V (ω), K ′′T (ω) and β′′V (ω) are the imaginary parts of the frequency depen-
dent isochoric specific heat capacity per unit volume, isothermal bulk modulus
and isochoric pressure coefficient4 respectively, then the dynamic Prigogine-
Defay ratio is (Appendix of Paper I)

ΛV T (ω) ≡ −c
′′
V (ω)K ′′T (ω)
T [β′′V (ω)]2

. (4.9)

The fluctuation-dissipation theorem [Smit and Frenkel, 2001, Appendix C] con-
nects equilibrium fluctuations to response functions. If ∆E(t) = E(t) − 〈E〉,
∆p(t) = p(t)−〈p〉 and Cω{f(t)} = 1

2π

∫
f(t) cos(ωt)dt denotes the cosine trans-

form of f(t), then (Paper IV)

c′′V (ω) =
ω

V kBT 2
Cω{〈∆E(0)∆E(t)〉V T }, (4.10)

K ′′T (ω) = − ω

V kBT
Cω{〈∆p(0)∆p(t)〉V T }, (4.11)

β′′V (ω) =
ω

V kBT 2
Cω{〈∆E(0)∆p(t)〉V T }. (4.12)

Combining equation 4.9 to 4.12, ΛV T (ω) can be re-expressed as

ΛV T (ω) =
Cω{〈∆E(0)∆E(t)〉V T }Cω{〈∆p(0)∆p(t)〉V T }

[Cω{〈∆E(0)∆p(t)〉V T }]2 . (4.13)

For later use, we will also define the frequency-dependent slope as

γpE(ω) = V

√
Cω{〈∆p(0)∆p(t)〉V T }
Cω{〈∆E(0)∆E(t)〉V T } (4.14)

that can be written (from Equations 4.10 and 4.11) as

γpE(ω) =

√
−K ′′T (ω)
Tc′′V (ω)

. (4.15)

4See the Appendix of Paper I for the definition of (all) the frequency-dependent response
functions
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Cω(f(t)) relates to fluctuations of f(t) on a 1/ω time-scale (similar to mak-
ing a running-average over an 1/ω time-window) and thus,

(ΛV T (ω))−1/2 =
Cω{〈∆E(0)∆p(t)〉V T }√Cω{〈∆E(0)∆E(t)〉V T }Cω{〈∆p(0)∆p(t)〉V T }

(4.16)

is a measure of how correlated p and E are on this time-scale. If we regard
Equation 4.5 as our definition of a single parameter liquid, then it follows that
(ΛV T (ω))−1/2 = 1.

In computer simulations, and conceptually, a more convenient way to study
slow thermodynamic fluctuations is though time-correlation functions [Hansen
and McDonald, 2006] and defining a time-dependent correlation coefficient as

RpE(t) ≡ 〈∆E(0)∆p(t)〉V T√〈∆E(0)∆E(t)〉V T 〈∆p(0)∆p(t)〉V T
(4.17)

and a time-dependent slope

γpE(t) =

√
〈∆p(0)∆p(t)〉V T
〈∆E(0)∆E(t)〉V T . (4.18)

From the fluctuation dissipation theorem it follows that this is what could be
derived from measurements of step experiments [Smit and Frenkel, 2001].

Let us set-up some equations to illustrate possible scenarios of equilibrium
fluctuations. Let x(t) and y(t) be the conjugated variables of the fixed variables
X and Y respectively. For simplicity, we will shift and normalize x and y so
〈x〉 = 〈y〉 = 0 and 〈x2〉 = 〈y2〉 = 1. Imagine that x(t) and y(t) are sums
of some hidden independent stochastic Debye processes f1(t), f2(t), s1(t) and
s2(t). They are independent so cross-correlation functions are zero. Let f1 and
f2 be fast processes, 〈f1(0)f1(t)〉 = 〈f2(0)f2(t)〉 = exp(−t), and s1 and s2 be
slow process, 〈s1(0)s1(t)〉 = 〈s2(0)s2(t)〉 = exp(−t/100). Write x(t) as

x(t) = Gλx
λxf1(t) +Gλx

(1− λx)s1(t) (4.19)

where λx (0 ≤ λx ≤ 1) determines the relative size of the fast process, and

Gλ = 1/
√
λ2 + (1− λ)2, (4.20)

ensures normalization5, 〈x2〉 = 1. In addition to f1 and s1, let y(t) also depend
on f2 and s2 to introduce some de-correlation between x and y:

y(t) = Gλy
Gλf

λy[λff1(t) + (1− λf )f2(t)]
+ Gλy

Gλs
(1− λy)[λss1(t) + (1− λs)s2(t)]. (4.21)

where λy (0 ≤ λy ≤ 1) determines the relative size of fast process. λf (0 ≤
λf ≤ 1) and λs (0 ≤ λs ≤ 1) determines the amount of correlation on fast and
slow time-scales respectively. The time correlation functions for x and y are

〈x(0)x(t)〉 = G2
λx
λ2
x〈f1(0)f1(t)〉

+ G2
λx

(1− λx)2〈s1(0)s1(t)〉, (4.22)

5Since 〈x2〉 = G2
λx

[λ2
x〈f2

1 〉+(1−λx)2〈s21〉+2λx(1−λx)〈f1s1〉] = 1, 〈f2
1 〉 = 〈s21〉 = 1 and

〈f1s1〉 = 0 then Gλ = 1/
p
λ2 + (1− λ)2, Equation 4.20.
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A single order-parameter of viscous liquids

Figure 4.1: A possible scenario of thermodynamic fluctuations, Equations 4.19
and 4.21. In the parametrization shown, x and y are strongly correlated on
long time-scales, but not on short time-scales. See also Figure 4.2.
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4. Strongly correlating viscous liquids

Figure 4.2: A possible scenario of thermodynamic fluctuations, Equations 4.19
and 4.21. In the parametrization shown, x and y are strongly correlated on
short time-scales, but not on long time-scales. See also Figure 4.1.
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〈y(0)y(t)〉 = G2
λy
λ2
yG

2
λf
λ2
f 〈f1(0)f1(t)〉

+ G2
λy
λ2
yG

2
λf

(1− λf )2〈f2(0)f2(t)〉
+ G2

λy
(1− λy)2G2

λs
λs〈s1(0)s1(t)〉

+ G2
λy

(1− λy)2G2
λs

(1− λs)〈s2(0)s2(t)〉 (4.23)

and

〈x(0)y(t)〉 = Gλx
λxGλy

λyGλf
λf 〈f1(0)f1(t)〉

+ Gλx
(1− λx)Gλy

(1− λy)Gλs
λs〈s1(0)s1(t)〉. (4.24)

Since the auto-correlation functions of f1, f2, s1 and s2 is simply exponential
relaxations it is straightforward to get an analytical expression of the time-
dependent correlation coefficient Rxy(t), Equation 4.17. Moreover, the cosine
transform of exponential relaxation is given analytically [Spiegel and Liu, 1999],
Cω{exp(−t/τ)} = ={ 1

iω+1/τ }, where
√−1 = i and = is the imaginary part.

Thus, the dynamic Prigogine-Defay ratio ΛXY (ω), Equation 4.13, also has an
analytic expression. Three parametrization are shown on Figures 4.1, 4.2 and
4.5.

Now, consider a strongly correlating viscous liquid (Chapter 2). When
ΛV T (ω) is evaluated, fast (picoseconds) kinetic parts of p and E are aver-
aged out. Qualitatively this corresponds to the parametrization of Figure 4.1.
Only the configurational parts survive so Ē(t) = Ū(t) and p̄(t) = W̄ (t)/V
(again, the bar indicates an average). A simple minded guess is therefore
that (ΛV T (ω))−1/2 is equal to the W -U energy correlation coefficient, RWU .
Strictly speaking, we cannot make this connection unless RWU is exactly unity.
To demonstrate this, think of x = W and y = U in Figure 4.1. Then the figure
illustrates a situation where (ΛV T (ω))−1/2 > RWU . The opposite situation,
(ΛV T (ω))−1/2 < RWU , is also possible as shown in Figure 4.2 (by changing the
parametrization).

A realistic model system, the Kob-Andersen binary Lennard-Jones liquid,
show, however, that to a good approximation

RpE(t) ' RWU (4.25)

and
(ΛV T (ω))−1/2 ' RWU , (4.26)

as seen on Figure 4.3 and 4.4. This is a consequence of RWU being close
to unity. Moreover, the W -U slope γWU can to a good approximation be
calculated from

γpE(ω) ' γWU , (4.27)
and

γpE(t) ' γWU . (4.28)
Before we move on, a final comment should be made. Measurements on

viscous liquids typically reveal more than one relaxation processes. Think of a
situation where a liquid has a slow α-relaxation and a faster β-relaxation. Imag-
ine that individually they are strongly correlating, but gives different strength
to x and y. In other words, they have different slopes. Such a situation is
shown on Figure 4.5. Note that in the region where the two processes mix,
there is a decrease of correlation. Experimental data of ΛpT (ω) can in this way
give some insight about the origin of relaxations.

37
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Figure 4.3: Auto- and cross correlation functions of (total) energy and pres-
sure of the Kob-Andersen binary Lennard-Jones liquids at T = 0.434. A
stretch exponential (fitted at t > 100), A exp(−(t/τ)−β), are shown. The
linear Prigogine-Defay ratio (Equation 4.2) can be estimated as Πlinear

V T '
0.255√

0.187·0.300
= 1.08 ((Πlinear

V T )−1/2 ' 0.962) using the prefactors of the fit. The
lower panels shows the time dependent correlation coefficient RpE(t) (Equa-
tion 4.17) and the corresponding slope (Equation 4.18). The W -U correlation
coefficient RWU = 0.936 andW -U slope γWU = 5.52 are indicated with dashed
lines.
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Figure 4.4: Normalized imaginary parts of natural response functions of the
NV T ensemble (Equations 4.10 to 4.12) of the Kob-Andersen Lennard-Jones
liquids at T = 0.434. The peak to the right is partially a consequence of the
(artificial) Nosé-Hoover thermostat [Nosé, 1984, Hoover, 1985] and peak on
the left is the structural relaxation peak. Note that the left-hand side of the
structural relaxation peak has slope +1 and the right-hand side has close to
slope − 1

2 (in the log-log representation). This is in good agreement with what
is found in experiments [Nielsen et al., 2008] (note that the stretch exponential
β, Figure 4.3, is somewhat larger than the limiting slope). The lower panels
show the inverse square root of the dynamic Prigogine-Defay ratio (Equation
4.9) and the corresponding slope (Equation 4.14). The instantaneous W -U
correlation coefficient RWU = 0.936 and slope γWU = 5.52 are indicated with
red dashed lines. 39



4. Strongly correlating viscous liquids

Figure 4.5: A possible scenario of thermodynamic fluctuations, Equations 4.19
and 4.21. Since γf = γs = 1, the fast and one slow Debye process would give
perfect correlation between x and y if they where alone. Since γx = 0.4 is
different from γx = 0.2 the slope of the fluctuations are different for the fast
and the slow Debye relaxation. The consequence of this is that in the “mixing
region” of the two internal Debye relaxations (ΛXY (ω))−1/2 have a dip.

4.1.3 Rethinking the classical Prigogine-Defay ratio

As discussed earlier, the classic Prigogine-Defay ratio Πclassic
pT , Equation 4.1

page 29, is not strictly well-defined. However, let us assume that the values of
the (static) response functions of the liquid correspond to the ω → 0 limits and
the (static) responses functions of the glass6 correspond to the ω → ∞ limits
of the frequency-dependent response functions of the equilibrium liquid at Tg.
This would make Πclassic

pT equal to the well-defined linear Prigogine-Defay ratio
Πlinear
pT , Equation 4.2 (page 30). Then, the inverse square root of the classical

Prigogine-Defay ratio reflects a correlation coefficient,

(Πclassic
pT )−1/2 ' RV S(of slow fluctuations), (4.29)

and
(Πclassic

V T )−1/2 ' RpS(of slow fluctuations), (4.30)
or, as argued in the previous section,

(Πclassic
V T )−1/2 ' RWU . (4.31)

This is a novel interpretation of Πclassic. Also, the W -U slope can be estimated
from the same data as

γWU ' γclassicV T =
√−∆KT

T∆cV
. (4.32)

6Since a glass can be prepared in numerous ways, there is no unique value of the glass
response functions. How this effects the approximation is a matter of future studies.
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Equations 4.31 and 4.32 are verified for the Kob-Andersen binary Lennard-
Jones liquid, Figure 4.6. This is an useful approximation, since values of the
classical ratio are available in litterateur. A revisit of Πclassic enable us to
investigating the conjecture of Section 2.2 (page 17). This conjecture speculates
that van der Waals bonded liquids are strongly correlating liquids.

First, we investigate Πclassic of some model systems. The Kob-Andersen
binary Lennard-Jones liquid have a ratio close to unity, Figure 4.6. Clarke
[1979] reported Πclassic

pT ' 1 for the (single component) Lennard-Jones liquid
and Cape and Woodcock [1980] argue that the ratio must be unity in soft-
sphere systems (consistent with Chapter 3). These authors noted that this was
not in agreement with the wisdom of that time – that Prigogine-Defay ratios
typically had values between 2 and 4 [Gupta and Moynihan, 1976]. However,
in the light of strongly correlating liquids, a ratio close to unity is expected in
all of these model systems. Thus, simulations support the claim that strongly
correlating viscous liquids have Πclassic

pT ' 1.
Now, let us reexamine the classical Prigogine-Defay found experimentally,

Table 4.1. Some Πclassic
pT are infact close to unity. In Table 4.1 liquids are listed

with decreasing Πclassic
pT . Note that the lowest values are for the van der Waals

bonded liquids – exactly as it is claimed by the conjecture. As an example,
Takahara et al. [1999] have measured Πclassic

pT = 1.20± 0.05 corresponding to a
correlation coefficient of (Πclassic

pT )−
1
2 = 0.92± 0.02 for OTP (67%) mixed with

OPP (33%). This supports the conjecture that van der Waals bonded liquids
are strongly correlating liquids. Unfortunately this the only value of a van der
Waals bonded molecular liquid. However, the van der Waals bonded polymers
also have Πclassic

pT close unity.
Another supporting observation relates to n-propanol, with one OH-group,

and glycerol with three OH-groups. Both molecules are approximately the same
size having a backbone of three carbon atoms. With an increasing number of
OH-groups Πclassic

pT is expected to increase since correlation is destroyed by
hydrogen bonds. Indeed Πclassical

pT (glycerol) = 9.4 is significantly larger than
Πclassical
pT (n-propanol) = 1.9.
There is at present time little interest for Πclassical

pT . Presumably, this is due
to the negative result of Gupta and Moynihan [1976]. However, the presented
rethinking and revisit of the Prigogine-Defay ratio, demonstrates that interest-
ing information can be extracted from the ratio. As we shall see in the following
section the slope γWU is an important quantity for strongly correlating viscous
liquid. This is accessible though equation 4.32. Experimentalists are therefore
urged to regain interest in the Prigogine-Defay ratio – both the classical and
the more well-defined frequency-dependent version.

4.2 Hidden scale invariance

In this section, in Paper VII and in Paper XIII it is argued that strongly
correlating liquids have a hidden scale invariance: State points with the same

Γ ≡ ργs/T (4.33)

have (approximately) the same dynamics and structure (in scaled units). The
scaling exponent γs is the same as γWU , however, since γWU is slightly state

41



4. Strongly correlating viscous liquids

Figure 4.6: Classical approach to obtain the Prigogine-Defay ratio and slope
of the Kob-Andersen binary Lennard-Jones liquid. A glass at temperature T
was made from a quenched structure (cooled instantaneous to T = 0) taken
from a configuration in equilibrium at T = 0.457 (marked by a arrow). After
500 ps of equilibration, 1000 ps of E and p fluctuations were used to calculate
〈(∆E)2〉Glass, 〈(∆p)2〉Glass and 〈∆E∆p〉Glass. E and p showed no drift (anneal-
ing of the glass) compared to the size of the fluctuations. Within statistical
error, the classical approach reproduces the W -U correlation coefficient and
W -U slope of instantaneously fluctuations.
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point dependent, scaling can only be approximate. Nevertheless, as shown
below in simulations, γs chosen to be the average γWU of the state points of
interest gives good scaling.

The theoretical explanation for hidden scale invariance is as follows: First,
recall the work of Hoover and coworkers [Hoover et al., 1970, Hoover and Ross,
1971, Hoover et al., 1971] showing the simplicity of soft-sphere liquids where
particles interact pairwise via an inverse power-law,

Upow(rij) = ε
(rij
σ

)−n
. (4.34)

In such a systems, physical quantities expressed in units of the characteristic
velocity

vs ≡
√
kBT

m
(4.35)

and the characteristic length

ls ≡
(
N

V

)−1/3

(4.36)

are the same for state points with the same Γ (Equation 4.33) [Hoover et al.,
1971]. Thus, in scaled units state points with the same Γ are identical, having
the same structure and dynamics. Therefore, soft-sphere liquids are said to
have scale invariance.

Now, consider a strongly correlating liquid and recall the origin of theW -U
correlation given in Chapter 3. The pair energy can be written as

U(rij) = Upow(rij) + brij + Udiff(rij) (4.37)

where Upow is referred to as the effective inverse power-law. Let us con-
sider state points with the same Γ in the NV T ensemble. The trajectory at
these state points (and in general) is determined by the visited energy surface
U(~R(t)) =

∑
pairs U(rij), where ~R(t) is the 3N coordinate vector of the system,

~R(t) = {~r1(t), ~r2(t), . . . , ~rN (t)}. As argued in Chapter 3,
∑

pairs[br+Udiff(rij)]
does not fluctuate (at constant volume) and

U(~R(t)) ' Upow(~R(t)) + U0(V ). (4.38)

U0(V ) is only a function of volume V . Assume that Upow is not too state
point dependent (γWU nearly constant). Then, strongly correlating liquids
inheritd the scale invariance of structure and dynamics of soft sphere liquids.
It should be noted that strongly correlating liquids are not as simple soft-
sphere liquids. For soft-sphere liquids the pressure can be related directly to
the energy, 3

n (pV/(NkBT ) − 1) = (E/(NkBT ) − 3
2 ) or 3

nW = U (Appendix
A.1); this is not the case for strongly correlating liquids as disused in Chapter
2 (Figure 2.2 page 15). Nevertheless, scale invariance is found in simulations
and experiments as discussed in the following.

Figure 4.7 show the W -U correlation coefficient RWU and the W -U slope
γWU of the Lewis-Wahnström OTP model for a range of state points. Since
RWU is close to unity (0.90 < RWU < 0.93) this is a strongly correlating
liquid. Moreover, the slope γWU only varies 7% about 7.9 for the investigated
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Figure 4.7: W -U correlation coefficient (top) and W -U slope (bottom) of the
Lewis-Wahnström OTP model. The correlation is strong 0.90 < RWU < 0.93
and the slope varies only slightly around 7.9 (±7%).

state points. For comparison, γWU is about 5.9 with the same spread for the
asymmetric dumbbell model (Paper VII and Paper XIII). Therefore, we should
expect the Lewis-Wahnström OTP liquid to have scale invariance of structure
and dynamics with γs = 7.9.

Figure 4.8 shows the radial distribution function of three selected state
points. Two of the state points have same Γ and the same radial distribution
function as a function of scaled length r′ = r(N/V )1/3 (although the scaling is
not perfect, see legend of Figure 4.8). Thus structure can be scaled as expected.
The third of the shown state points has the same temperature as the first, and
the same pressure as the second. However, for this third state point, scaling of
structure fails since Γ is different from that of the two other state points. In
Paper XIII it is shown that structure of the asymmetric dumbbell model can
be scale as well (simulations conducted by Thomas B. Schrøder).

Scaling of dynamics can be investigated though the diffusion constant. Fig-
ure 4.9 shows scaling of the reduced (using vs and ls defined in Equations 4.35
and 4.36) diffusion constant D∗ = D(N/V )1/3(kBT/m)−1/2 [Rosenfeld, 1999,
Coslovich and Roland, 2008] of the Lewis-Wahnström OTP model. Scaling of
the the asymmetric dumbbell model is shown in Paper VII and Paper XIII. A
equivalent scaling of dynamics has been reported experimentally [Tölle, 2001,
Dreyfus et al., 2003, Alba-Simionesco et al., 2004, Casalini and Roland, 2004,
Roland et al., 2005]. For van der Waals bonded liquids, the structural relax-
ation is only a function of ργs/T :

τα = g(ργs/T ). (4.39)

However, before this study, it was not known that γs ' γWU could be calculated
from two response function (see previous section). At first, it was believed that
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Figure 4.8: The radial distribution function g(r) (top) at three state points
of the Lewis-Wahnström OTP model. The definition of g(r) is given in 3.2.
In the bottom panel it is shown that when Γ is the same, then the structure
is also the same in scaled units. The inset show a zoom-in on the first peak.
Note that the scaling is not perfect. This is presumably a consequence of rigid
bonds connecting Lennard-Jones particles not scaling.
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4. Strongly correlating viscous liquids

Figure 4.9: Scaling of the reduced diffusion constant of the Lewis-Wahnström
OTP model. Note that the scaling works when the scaling exponent equals the
W -U slope γs = 7.9 ' γWU , see Figure 4.7.
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the scaling worked in general for viscous liquids. However, it is now realized
that density scaling does not work for hydrogen bonded and covalent bonded
liquids [Ferrer et al., 1998, Hensel-Bielowka et al., 2002, Roland et al., 2006,
Le Grand et al., 2007, Roland et al., 2008]. This agrees with the theoretical
framework given here, since these liquids are not strongly correlating. In Paper
VII the failure of scaling for non-strongly correlating liquids is demonstrated
by adding charges to the asymmetric dumbbell model (simulations conducted
by Thomas B Schrøder).

Finally, it should be noted that Coslovich and Roland [2009] in a resent
paper also confirms the theoretical frame work given here in simulations of
viscous binary Lennard-Jones mixtures.
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Chapter 5

Volume-energy fluctuations of
phospholipid membranes

This chapter reports a simulation study of phospholipid membranes. Some
membranes have strong correlations between the slow volume and energy fluc-
tuations. The origin of the correlation can be traced to the van der Waals
bonded core (the fatty acyl chains). Thus, strong correlations of membranes
have the same origin as those of strongly correlating simple liquids (Chapter 3).
This demonstrates that complex systems, exemplified by phospholipid mem-
branes, can have properties similar to that of strongly correlating simple liquids
(discussed in previous chapters).

Results of this chapter can also be found in Paper V and Paper X.

5.1 Motivation

A phospholipid is an amphiphilic molecule, thus having a hydrophilic and hy-
drophobic part. In water, phospholipids can self-organize into membranes,
where hydrophobic acyl-chains are shielded from water as sketched in Figure
5.1.

Figure 5.2 shows two snapshots of all-atom molecular dynamics simulations
of such two phospholipid membranes (details are given later). The acyl-chains
are disordered in the membrane to the left, and are ordered in the membrane
to the right. Two such phases are also found in nature, and are referred to as
the (disordered) Lα and the (ordered) Lβ phase [Zhang et al., 1995, Nielsen
et al., 2007].

The Lβ → Lα phase transition is seen as a dramatic increase of response
functions. Figure 5.3 shows excess (caused by the transition) compressibility
∆κT (T ), and excess heat capacity ∆cp(T ) over the Lα → Lβ phase transition of
a di-myristoyl-phosphatidyl-choline (DMPC) membrane. As seen in the figure,
∆κT (T ) and ∆cp(T ) can be superimposed,

∆κT (T ) =
(γHV )2T

V̄ (T )
∆cp(T ). (5.1)

Such a proportionality is a natural consequence if

∆Vi = γHV ∆Hi (5.2)
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5. Volume-energy fluctuations of phospholipid membranes

Figure 5.1: Sketch of phospholipids forming a spherical vesicle. Extruded phos-
pholipids form such vesicles. Often phospholipid vesicles serve as a simple
model of a biological cell [Alberts et al., 2002]. Hydrophilic head-groups of
lipids are drawn as circles, and hydrophobic fatty acyl-chains as lines. The gray
area represents a hydrophobic region, separating “in-site” water form “out-site”
water. The figure is copied from my master thesis [Pedersen, 2005]. Figure 5.2
show a snap-shot from a simulation of such a phospholipid membrane.

Figure 5.2: Snap-shot from all-atom simulations of two fully-hydrated DMPC
membranes. The membrane on the left is in a disordered phase whereas the
membrane on the right is in an ordered phase. Hydrogen is not shown for
clarity, but is included in the actual simulations. The blue wire-frame indicates
the periodic boundary box. This figure can also be found in Paper X.
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Figure 5.3: Heat capacity and volume expansion coefficient of extruded DMPC
vesicles (Figure 5.1) at the phase transition. The two curves can be superim-
posed, Equation 5.1. This figure is copied from Ebel et al. [2001].

for available micro-states [Ebel et al., 2001, Heimburg, 1998]. Note that this
equation is similar to Equations 4.5-4.8 (page 32). This suggests a connec-
tion between strongly correlating liquids and membranes. As a part of my
master thesis, I simulated phospholipid membranes [Pedersen, 2005, Pedersen
et al., 2007] and it was therefore natural to revisit the simulated membranes
to investigate the above proportionality.

Before moving on, the importance for biological membranes (where the ma-
jor constituents are phospholipids), of a proportionality should be mentioned.
The conventional wisdom is that nerve signals are carried as electrical signals
as formulated in the theory by Hodgkin and Huxley [1952]. However, recently
Heimburg and Jackson [2005] showed that biological membranes may carry
solitonic sound waves, and subsequently speculated that nerve signals may be
carried this way [Heimburg and Jackson, 2007]. An element in the Heimburg-
Jackson theory of nerve signals is that enthalpy and volume are correlated in
their slow thermal fluctuations.

5.2 A simulation study

The following study includes simulations of seven membranes (simulations con-
ducted by Günther H. Peters). The following abbreviations are used:

DMPC-f: fully hydrated di-myristoyl-phosphatidyl-choline membrane in fluid
phase. The initial configuration is taken from Reference [Pedersen et al.,
2007].

DMPC-g: fully hydrated di-myristoyl-phosphatidyl-cholin membrane in or-
dered phase. The initial configuration is built from a configuration in
Reference [Venable et al., 2000].
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DPPC-f: fully hydrated di-palmitoyl-phosphatidyl-choline membrane in fluid
phase. The initial configuration is taken from Reference [Sonne et al.,
2007].

DPPC-g: fully hydrated di-palmitoyl-phosphatidyl-choline membrane ordered
phase. The initial configuration is built from a configuration in Reference
[Venable et al., 2000].

DPPG: fully hydrated di-palmitoyl-phosphatidyl-glycerol membrane in fluid
phase with calcium counter ions. Initial configuration is taken from Ref-
erence [Pedersen et al., 2006].

DPPS: fully hydrated di-myristoyl-phosphatidyl-serine membrane in fluid phase
with calcium counter ions. Initial configuration is taken from Reference
[Pedersen et al., 2006].

DMPSH: fully hydrated and protonated di-myristoyl-phosphatidyl-serine mem-
brane in fluid phase. Initial configuration is taken from Reference [Ped-
ersen et al., 2006].

Some simulation details are given in Table 5.1, however, for more details the
reader is referred to Paper X and References [Pedersen, 2005, Pedersen et al.,
2006, 2007].

It is not feasible to have the simulation temperature at the phase tran-
sition and test Equation 5.1 directly since relaxation time of the membrane
simply exceeds the simulation time. However, as demonstrated in the follow-
ing, volume-energy correlations are also present in the fluid and the ordered
phase (where “quasi” equilibrium states can be reached).

Figure 5.4 shows a time-series of slow thermal fluctuation of volume and
energy (of the DMPC-f membrane). Volume and energy are strongly correlated
with a correlation coefficient of

RV̄ Ū =
〈∆Ū∆V̄ 〉√

〈(∆Ū)2〉〈(∆V̄ )2〉 = 0.77, (5.3)

where the bar indicates an averaging window of 1
2 ns. This averages out fast

fluctuations. If no averaging is done, the correlation coefficient is reduced to
RV U = 0.35. As seen in the following, this is partially due to fast fluctuations
of the water (recall that water is not a strongly correlating liquid as shown in
Figure 2.3 page 16).

Table 5.1 list RV̄ Ū and Figure 5.5 shows the time-dependent correlation
correlation coefficient,

RV U (t) =
〈∆U(0)∆V (t)〉√〈∆U(0)∆U(t)〉〈∆V (0)∆V (t)〉 , (5.4)

of the seven membranes. Five of the membranes, DMPC-f, DPPC-f, DPPC-
g, DMPG and DMPSH, have strong correlations in the slow volume-energy
fluctuations with RV̄ Ū ≥ 0.75 and RV U (t > 0.5 ns) > 0.75. The origin of the
correlation can be traced to the hydrophobic (van der Waals bonded) core of
the membrane. This can be quantified as done in the following:

First, the atoms are divided into three groups, using the following sub-
scripts:
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Figure 5.4: The top panel shows normalized fluctuation of volume, ∆V̄ (t)/σV̄ ,
and energy, ∆Ū(t)/σŪ of the DMPC-f membrane. The bar indicates a 1

2 ns
averaging window. ∆V̄ and ∆Ū are strongly correlated with a correlation
coefficient of RV̄ ,Ū = 0.77. The bottom panel shows normalized fluctuations of
the Voronoi volume of the tail region, ∆V̄t(t)/σV̄t

, and Lennard-Jones energy
of tail-region, ∆ ¯ULJ

t (t)/σ ¯ULJ
t
. The correlation coefficient is RV̄t,

¯ULJ
t

= 0.87.
There figures can also be found in Paper X.
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Table 5.1: Overview of simulation details and results

tsim tprod Nlip T Nwat

Nlip
RV̄ Ū γV̄ Ū RŪŪt

[ns] [ns] [K]
DMPC-f 151 121 128 330 33 0.77 6.7 0.82
DMPC-g 65 36 64 286 33 0.47 4.3 0.31
DPPC-f 180 124 72 325 29 0.87 7.1 0.89
DPPC-g 78 48 64 304 33 0.75 4.6 0.71
DMPG 149 49 128 330 33 0.82 5.9 0.80
DMPS 139 49 128 340 36 0.59 5.3 0.64
DMPSH 136 35 128 340 37 0.78 9.2 0.84

tsim: Total simulation time in nanoseconds; tprod: Length of production run
in nanoseconds (only membranes in quasi-equilibrium, i.e., with no detectable
drift in the area per molecule, were included in the data analysis); Nlip: Number
of lipid molecules; T : Temperature in Kelvin; Nwat/Nlip: Number of water
molecules per lipid molecule; RV̄ Ū : Energy-Volume correlation coefficient; γV̄ Ū :
Energy-volume scaling factor in Å3 mol/kcal; RŪŪt

: Energy-“Energy of acyl
groups” correlation coefficient.

Figure 5.5: Time-dependent correlation function of volume-energy (Equation
5.3. DMPC-f, DPPC-f, DPPC-g, DMPG and DMPSH membranes have strong
volume-energy correlation in the slow fluctuations, RV U (t > 0.5 ns) > 0.75.
This figure can also be found in Paper X.
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Figure 5.6: The principle of construction of Voronoi polyhedrons [Voronoi,
1908]. For simplicity, a construction in two dimensions is shown. On the left,
circles represent particles. The Voronoi polygon of the center atom is drawn
with full lines. Points included in this volume have the center particles as the
closest particle. The Voronoi polygons of a collection of particles are shown on
the right. Note that the Voronoi polygons tile space. The total area is therefore
the sum of Voronoi areas. In three dimensions polygons become polyhedra and
the total volume is the sum of the Voronoi volumes. This figure is copied from
my master thesis [Pedersen, 2005].

t for “tail”. Atoms of −CH2− and −CH3 groups of the fatty acyl-chains.
Shown as light blue atoms in Figure 5.2.

h for “head”. The remainder of the lipid atoms. As seen in Figure 5.2, these
atoms are located in the interface and are in close contact with water.

w for “water”. Shown as red spheres in Figure 5.2. Note that water is excluded
from the core of the membrane.

The volume of a given region is calculated by summing Voronoi volumes
[Voronoi, 1908] of the heavy atoms (excluding hydrogen); V = Vt+Vh+Vw. The
principle of construction Voronoi polyhedrons are given in Figure 5.6. Also,
energy can be split up in three contributions; U = Ut + Uh + Uw where

Ux = U intra
x +

1
2

∑
i = x

∑
j = all

U coul
ij +

1
2

∑
i = x

∑
j= all

ULJ
ij , (5.5)

with x either tail, head, or water. U intra
x is the energy of intra-molecular bonds,

U coul
ij = qiqj/(4πε0rij) , (5.6)

is the Coulomb energy of two pairs, and

ULJ
ij = 4εij((σij/rij)12 − (σij/rij)6) (5.7)

is the Lennard-Jones pair energy.
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Figure 5.7: Terms of equation 5.8 for the DMPC-f membrane. See text after
this equation for more details. This figures can also be found in Paper X.

The auto-correlation functions of volume and energy (Equation 5.4), can
now be split into six terms:

〈∆V(0)∆V(t)〉 = 〈∆Vt(0)∆Vt(t)〉
+ 〈∆Vh(0)∆Vh(t)〉
+ 〈∆Vw(0)∆Vw(t)〉
+ 2〈∆Vt(0)∆Vh(t)〉
+ 2〈∆Vt(0)∆Vw(t)〉
+ 2〈∆Vh(0)∆Vw(t)〉, (5.8)

with V either E or V . Figure 5.7 shows the six terms of volume and energy
respectively (DMPC-f membrane). The only non-vanishing term of slow (t ' 1

2
ns) fluctuations of volume is 〈∆Vt(0)∆Vt(t)〉, showing that slow fluctuations
of volume are dominated by the tail-region, as expected. Also slow energy
fluctuations are dominated by the tail region. However, it should be noted that
the contributions to fluctuations from water and head-region are significant. As
discussed later, this weakens the (total) volume-energy correlation of a given
membrane, explaining that some membranes have stronger Ū -V̄ correlation
than others.

Also, Figure 5.7 shows an additional splitting of the tail-energy in inter-
molecular bond energy, Lennard-Jones (or van der Waals) energy and Coulomb
energy (similar to that of Equation 5.8). As expected, slow fluctuations are
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dominated by the Lennard-Jones contribution.
The analysis suggests that the origin of the (total) volume-energy correla-

tion can be traced to the van der Waals bonded tail region:

∆V̄t ∝ ∆ŪLJt , (5.9)

where
ULJt =

1
2

∑
i=tails

∑
j=all

ULJ
ij (5.10)

Remember, however, that we throw away some non-vanishing energy terms.
Nevertheless, RV̄t,

¯ULJ
t

= 0.87 is larger than RV̄ Ū = 0.78 strengthens this con-
clusion. As mentioned earlier, the correlation is weakened by the tail-energy
not completely dominating slow fluctuations. To investigate this further, RŪŪt

can be used as a measure of how much of the energy fluctuations comes from
the tail region. Comparing RV̄ Ū with RŪŪt

, as done in Table 5.1, shows that
large values of RŪŪt

is followed by RV̄ Ū and vice versa.
Finally, a volume-energy scaling factor (or slope) can be calculated from

the simulations as

γV̄ Ū =

√
〈(∆V̄ )2〉
〈(∆Ū)2〉 (5.11)

The experimental value (Equations 5.1) is found to be (7.788± 0.110)× 10−4

mL/J = (5.418± 0.077) Å·mol/kcal for DMPC membranes [Ebel et al., 2001].
This roughly agrees with the values calculated in simulations, as seen in Table
5.1. One caveat is that γV̄ Ū of the fluid membranes is approximately two times
that of the ordered membrane. From the scaling given by Equation 5.1 it is
expected that they should be the same. More work is needed to clarify this.

Finally it should be noted that energy and volume generally do not have
significant correlation with membrane area or the chain order parameter defined
as [Tieleman and Berendsen, 1996]

SCD =
∣∣∣∣〈3

2
cos2(θCD)− 1

2

〉
ch

∣∣∣∣ (5.12)

where θCD is the angle between the membrane normal and the C-H bond of
a given methylene group, and 〈. . .〉ch denotes an average over all methylene
groups in all chains1. Correlation coefficients are listed in Table 5.2.

To conclude this chapter: It has been that demonstrated that a complex
system can have properties similar to that of a strongly correlating liquid. Note,
the importance of separation of time-scales. What happens is that a strongly
correlating element of the system dominates fluctuations on some time-scale.
In membranes, slow fluctuations of energy and volume are dominated by van
der Waals bonded core. Qualitatively this corresponds to what is shown in
Figure 4.1 (page 35).

1Note that usually a static SCD is reported, and for individual methyl-groups. Here a
dynamic version is defined.
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5. Volume-energy fluctuations of phospholipid membranes

Table 5.2: Correlation coefficients

R ¯V UV̄ γV̄ Ū RŪŪt
RŪĀ RV̄ Ā RĀS̄CD

RŪS̄CD
RV̄ S̄CD

DMPC-f 0.77 6.7 0.82 0.50 0.57 -0.75 -0.49 -0.54
DMPC-g 0.47 4.3 0.31 0.02 0.05 -0.64 0.12 0.14
DPPC-f 0.87 7.1 0.89 -0.29 -0.36 0.00 -0.61 -0.71
DPPC-g 0.75 4.6 0.71 -0.16 0.12 -0.67 0.09 -0.07
DMPG 0.82 5.9 0.80 0.41 0.40 -0.76 0.01 0.08
DMPS 0.59 5.3 0.64 0.30 0.28 -0.71 0.04 0.20
DMPSH 0.78 9.2 0.84 0.43 0.51 -0.50 0.05 0.14

RV̄ Ū : Energy-Volume correlation coefficient; γV̄ Ū : Energy-volume scaling fac-
tor in Å3 mol/kcal; RŪŪt

: Energy-“Energy of acyl groups” correlation coef-
ficient; RŪĀ: Energy-Area correlation coefficient; RV̄ Ā: Volume-Area cor-
relation coefficient; RĀS̄CD

: Area-“chain order-parameter” correlation coeffi-
cient; RŪS̄CD

: Energy-“chain order-parameter” correlation coefficient; RV̄ S̄CD
:

Volume-“chain order-parameter” correlation coefficient.
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Chapter 6

Stability of a binary mixture

Long-time simulations are important for computational studies of viscous liq-
uids. It is now possible to investigate low temperature liquids with several
decade of relaxation times. Nowadays, simulation times of 0.1 ms are within
reach for a system of 1000 particles, Figure 1.7 (page 8). As shown below,
however, some of the standard models used in the computational community
of viscous liquids crystallize on these time-scale. Paper II reports crystallization
of the Wahnström binary Lennard-Jones liquid [Wahnström, 1991]. Toxværd
et al. [2007] report crystallization1 of the Kob-Andersen Lennard-Jones liquid
[Kob and Andersen, 1994, 1995a,b]. Also the ortho-terphenyl model suggested
by Lewis and Wahnström [1994] crystallizes as seen in Figure 6.1.

The following sections gives a detailed investigation of the stability of the
Wahnström binary Lennard-Jones liquid. A paper including these results are
at the moment in the process of being written in collaboration with Peter
Harrowell (School of Chemistry, University of Sydney). The stability of the
Kob-Andersen Lennard-Jones liquid is only briefly discussed. More details can
be found in Paper XI. Crystallization mechanism of the Lewis-Wahnström o-
terphenyl model have not been investigated in details. However, the structure
of the formed crystal is shown in Figure 6.1.

6.1 The Wahnström binary Lennard-Jones mixture

This mixture was originally suggested by Wahnström [1991] to study viscous
liquid dynamics. It consists of two kinds of Lennard-Jones particles, labeled
A and B, where the diameter of B particles is σBB/σAA = 1.2 that of the A
particles. The composition is equivmolar, NA = NB . See section 1.2.1, Paper
II and Figure 1.4 for more details.

1In the final days before handing in the thesis, it was realized that the force parameters
for simulating the Kob-Andesen liquid was implemented wrong. The Lennard-Jones binding
energies simulated were ε′αβ = σαβεαβ where σαβ and εαβ are the original Kob-Andersen
parameters. Thus, the binding energies of BB pairs, ε′BB = σBBεBB = 0.88 ·0.5 = 0.44, and
AB, ε′AB = σABεAB = 0.8 · 1.5 = 1.2, pairs were reduced. A reduction of the AB binding
energy will increase composition fluctuations, and thereby making the system more prone to
crystallization. It is therefore still an open question on what time scale the Kob-Andersen
mixture will crystallize.
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6. Stability of a binary mixture

Figure 6.1: Crystal formed spontaneously from the melt of the Lewis-
Wahnström o-terphenyl model [Lewis and Wahnström, 1994] (three Lennard-
Jones particles placed in a isosceles triangle with an angle of 75°, see Figure
1.5). As seen in the upper part of the figure, all of the 324 molecules are ar-
ranged in an ordered structure (center particles are colored blue). A part of
crystal viewed from two angles is shown in the lower part of the figure. The
gray lines are guidelines for the eye.

60



The crystal

Figure 6.2: Time series of energy in two (selected) simulations of the Wahn-
ström binary Lennard-Jones liquid at T = 0.624. The dramatic drop in energy
is a consequence of crystallization. The structural relaxation time of the liquid
is of the order of a nanosecond.

6.2 The crystal

The Wahnström binary Lennard-Jones mixture can spontaneously form a crys-
tal from the melt. This is seen as a dramatic drop in energy as shown in Figure
6.2. An inspection of particle positions, as done in Figure 6.3, reveals a large
crystal with MgZn2 structure2 (and defects). The MgZn2 structure is not built
into the model, and was not, the authors knowledge, predicted. Table 6.2 lists
the energy and volume of some close-packed crystal structures. This analysis
indeed suggests that the MgZn2 structure is the true ground state.

The crystal is one of the so-called Laves phases that comprise the largest
group of inter-metallic phases [Stein et al., 2004, 2005]. Understanding crystal-
lization of a Laves structures is therefore important in its own right. MgZn2 has
optimal packing of hard-spheres when the size ratio is σB/σA =

√
3/2 ' 1.22,

close to the size ratio σB/σA = 1.2 of the Wahnström mixture. This close-
packing feature of MgZn2 makes crystallization related to packing.

The crystal formed is remarkable on two accounts: i) The AB liquid is off-
composition compared to the A2B crystal. Hence, a significant composition
fluctuations must accompani crystal formation. ii) The crystal structure is
quite complex, having a unit cell of 12 particles. In the light of this, it is
remarkable that the crystal forms at all. This is naturally also the reason why
crystallization of this model has not been reported before.

2MgZn2 structure (C14) have a trigonal, hexagonal unit-cell with P63/mm symmetry
with six A particles on the h position, two A particles on the a position and four B particles
on the f position, where h, a and f are the Wyckoff letters [Pearson, 1972, page 657].
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6. Stability of a binary mixture

Figure 6.3: Crystal formed spontaneously from the melt of the Wahnström
binary Lennard-Jones liquid. B particles are colored white (light gray) and
A particles are colored green (dark gray). The coordinates are the quenched
structure taken at the last point of the black curve in Figure 6.2. The left
hand side of the figure shows the positions of all the particles. The crystal
fills roughly half of the box. The remainder of the box is filled with a B-rich
liquid since the total composition is AB whereas that of the crystal is A2B.
The structure of the crystal is MgZn2 is shown in Figure 6.5. The right hand
side of the figure shows the formed crystal represented as Frank-Kasper bonds
(see Figure 6.7). Configurations are rotated for maximum clarity.

6.3 Mechanism of crystallization

First, define the first shell as particles within the first peak of the radial dis-
tribution function g(r) using the first minimum as cutoff, as shown in Figure
6.4. Then, define local composition as χfsB = ZB/Z, where ZB is the number
of B particles, and Z is the total number of particles in the first shell.

Let us take a closer look at the MgZn2 crystal structure shown in Figure
6.5. The smaller A particles have distorted icosahedral first shells with a lo-
cal composition of χfsB = 0.5. Figure 6.6 shows the distribution of first shell
arrangements of the liquids. Note that the most common is of the same kind
as the crystal. Coslovich and Pastore [2007] also noted the high abundant of
this arrangement. So the local arrangement around A particles is roughly the
same in liquid and crystal. On the other hand, crystalline B particles have
a first shell that is very different from the liquid. The crystalline B particles
have a high coordination of 16 particles and a local composition of χfsB = 0.25.
This first shell arrangement is unusual in the liquid (Figure 6.6). Thus, the
structural fluctuation leading to crystallization implies a significant change of
the first shells of B particles. Note that the composition fluctuation needed is
only seen around B particles.

To undertake a study of the rearrangement associated with crystallization,
we need to characterize local structure. I have extended the common neighbor
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Mechanism of crystallization

Table 6.1: Energy and packing of Wahnström crystals.

Crystal V/N U/N First shell compositions
[σ3
AA] [εAA]

Pure A
FCC†(A) 0.93663 -7.26293 A-12-0

A2B mixture
(Laves) MgCu2 1.13351 -7.28515 A-6-6 and B-12-4
(Laves) MgZn2 1.13193 -7.29910 A-6-6 and B-12-4
(Laves) MgNi2 1.13275 -7.29179 A-6-6 and B-12-4

MoPt2 1.16593 -6.83436 A-9-5 and B-10-4
MoSi2 1.16594 -6.83429 A-9-5 and B-10-4

AB mixture
Liquid 1.33341 -5.37896 Figure 6.6
CuAu 1.26577 -6.84244 A-3-8 and B-8-6
FeB 1.26449 -6.84971 A-4-8 and B-8-6

3
4MgZn2(A2B)+ 1

4FCC(B) 1.23842 -7.20207 A-6-6, 75% B-12-4
and 25% B-0-12

3
4CuZr2(AB2)+ 1

4FCC(A) 1.26088 -6.91559 75% A-4-8, 25% A-12-0
and B-4-9

1
2Cu(A)+

1
2FCC(B) 1.24726 -7.08695 A-12-0 and B-0-12

AB2 mixture
CuZr2 1.36896 -6.79967 A-4-8 and B-4-9

3
8MgZn2(A2B) + 5

8FCC(B) 1.39815 -7.05651 A-6-6, 37.5% B-12-4
and 62.5% B-4-9

Pure B
FCC(B)∗ 1.55788 -6.91096 B-0-12

Energies and volumes were calculated on the basis of NpT simulations of pure crystals:
FCC† of A particles, MgCu2, MgZn2, MgNi2, MoPt2, MoSi2, CuAu, FeB, AB2, CuZr2 and
a FCC of B particles. Crystals where simulated at T = 0.624 and p = 4.7 (same as liquid).

All these crystals are stable at this temperature and pressure (in the simulated time
interval of some nanoseconds). The candidates for structures where selected from Reference
[Kummerfeld et al., 2008] and private correspondence with Toby S. Hudson. Note that at
all the investigated compositions, MgZn2 in combination with a pure FCC crystal (A or B)
has lowest energy and volume, thus this is a good candidate for the true ground state of the
system (of-course, Gibbs free energies are the appropriate quantities to compare). †FCC:

face center cubic or Cu. ∗The energy of the FCC crystals (pure A and pure B) are different
although εAA = εBB . The difference is an artifact of the truncation of the potential.
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6. Stability of a binary mixture

Figure 6.4: Radial distribution function g(r) of the liquid at T = 0.624. The
first minimum is used as cut-off for when defining particles of the first shell.

analysis suggested by Honeycutt and Andersen [1986] so it takes the two kinds
of particles into account: Consider two neighbor particles and their common
neighbors as shown in Figure 6.7. Six integers is used to characterize such a
(two colored) bi-pyramid graph, RnAnBsAAsABsBB . Where R is the type of
neighbor pair so R = 1 for AA, R = 2 for AB and R = 3 for BB, nA and nB
is the number of A and B common neighbors respectively, and sAA, sAB and
sBB is the number of AA, AB and BB contacts amongst common neighbors.
We will refer to such a local arrangement as a bond. For later use, the stability
of a common neighbor arrangement is measured as the time interval of the first
and the last observation. This is referred to as the lifetime. Note that in this
time interval a particle can leave the arrangement as long as it returns at a
later time.

The crystal is made up of just five types of bonds. Three AA bonds, 114023,
123122 and 132221, an AB bond, 232140, and a BB bond, 360600. In the
following the 360600 BB bond will play an important role in the analysis. As
seen in Figure 6.5 the MgZn2 crystal structure can be viewed as a hexagonal
diamond structure of B particles connected by such bonds. Hence, each B has
four 360600-bonds pointing to the corners of a tetrahedron as seen on Figure
6.5. The 360600-tetrahedron is the basic element of all the Laves structures.
The difference between the structures is how the 360300-bonds are connected.
Such an analysis was the subject of the celebrated work by Frank and Kasper
[1958, 1959]. In acknowledgment of their work we will henceforth referrer to
360600 bonds as Frank-Kasper bonds. A Frank-Kasper bond is shown in Figure
6.7.

Let us return to the liquid (at T = 0.624). Figure 6.8 shows the average
lifetime and abundance of bonds in the liquid. The most common and stable
AA and AB bonds are the ones with five bonded common neighbors, nA+nB =
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Mechanism of crystallization

Figure 6.5: The MgZn2 crystal structure of the Wahnström binary Lennard-
Jones liquid. The white B particles are arranged in a hexagonal diamond
structure, connected with Frank-Kasper bonds (see Figure 6.7). Only first
shell green A particles of the central B are shown for clarity. Particles have
three kind of first shells shown in the lower part of the figure.

sAA + sAB + sBB = 5. These are of the same kind as the bonds of the crystal.
This is consistent with the previous conclusion, that the local environment of A
particles is similar to that of the crystal. These bonds are not only abundant;
they are also the most stable. This is an interesting observation. Some crystal
structure is built into the liquid, and, moreover gives stability to the liquid.
We will return to this when discussing long-lived structural fluctuations of the
liquid, Subsection 6.4.

One BB bond is different from the others, and that is the Frank-Kasper
bond (Figure 6.7). As seen in Figure 6.8, there are only about six of these
bonds, but when they are there, they are long-lived. The low abundance makes
Frank-Kasper bond ideal for investigating the onset of crystallization. Figure
6.9 shows the number of Frank-Kasper bond at the crystallization event and at
some points where the liquid experience transient dips in energy. At the onset
of crystallization there is, as expected, a large increase of Frank-Kasper bonds.
However, also in the meta-stable liquid, large transient clusters of Frank-Kasper
bonds appear. If two B particles, having one or more Franks-Kasper bonds,
shares A particles, that are a part of these bonds, we will consider the two B
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6. Stability of a binary mixture

Figure 6.6: Distribution of first shells of Wahnström binary Lennard-Jones
liquid. Note that the most frequent first shell of A particles are the same as in
the crystal, whereas this is not the case for the B particles.
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Long-lived structural fluctuations stabilizing the liquid

Figure 6.7: Neighboring particles and their common neighbors characterize by
six integers, RnAnBsAAsABsBB . The arrangement on the left is a AA pair,
R = 1, with one common A, nA = 1 and four common B particles, nB = 4.
The common neighbors have none AA contacts, sAA = 0, two AB contacts,
sAA = 2, and three BB contacts sBB = 3. Thus, this is a 114023-bond. The
arrangement on the right is a 360600-bond referred to as a Frank-Kasper bond.

particles to be in the same cluster. Figure 6.10 shows the largest clusters at the
transient dips in energy shown in Figure 6.9. Some of the clusters are dense
and similar to the crystal, whereas others are open structure not similar to the
crystal. Clearly such an open structure hinders crystallization. Also, clusters
tend to have (broken) pentagons of Frank-Kasper bonds. This is not a feature
of the crystal, and will hinder crystallization. In other words, besides forming
the Frank-Kasper bonds, the bonds also have to be arrange in the right way.

The onset of crystallization must be accompanied by a significant composi-
tion fluctuation. Figure 6.11 shows the average local composition of B particles
with zero to four Frank-Kasper bonds. Note that a substantial part of the com-
position fluctuation takes place at the formation of just a single Frank-Kasper
bond.

We now have a rather complete picture of the crystallization of the Wahn-
ström binary Lennard-Jones liquid. Let us summarize. Local crystalline-like
structure of A particles are build into the liquid as distorted icosahedra with
χfsB = 0.5. However, B particles are not in a local crystalline-like environment.
The formation of a Frank-Kasper bond, accompanied by a composition fluctu-
ation sets the onset of a possible crystallization event. A cluster will form, and
if it is compact it can continue to grow and eventually lead to non-reversible
growth.

6.4 Long-lived structural fluctuations stabilizing the
liquid

This section addresses the question: What are the long-lived structural fluctu-
ations stabilizing the metastable liquid? We will address this question by an
investigation of the 10% of particles with the longest lifetimes of first shells.
Figure 6.12 shows a cluster analysis of these particles. Stable particles are not
randomly distributed, but are form extended clusters. With decreasing tem-
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6. Stability of a binary mixture

Figure 6.8: Scatter plot of frequency and average lifetime of common neighbor
bi-pyramids. See text for more details.

perature the characteristic size of these cluster grow. This is an example of the
well-known heterogeneity of viscous liquids [Ediger, 2000].

Figure 6.13 show the first shell distribution of stable particles, relative to the
overall distribution. It is possible to identify a particular stable local arrange-
ment: the distorted icosahedra (Z = 12) first shells of A particles. Coslovich
and Pastore [2007] also note that the frequency of this arrangement grows with
decreasing temperature and associated this with the non-Arrhenius growth of
the structural relaxation time (although they use a Voronoi construction to in-
vestigate neighboring particles, see Figure 5.6). The most stable first shells of
B particles are less distinguishable. Nevertheless, a high coordination number
tends to give stability. Note that the more crystalline-like the arrangement
is, the more stability it gives. In other words, the crystal and the liquid use
the same kind of arrangement to get stability. Stability is gained both for the
liquid and crystal by the same kind of local packing. This is an interesting
observation. Often, properties of the liquid are regarded as disconnected from
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Long-lived structural fluctuations stabilizing the liquid

Figure 6.9: The top panels show quenched energy. In Panel 1A the drop in
energy is a result of crystallization. In the remaining panels reversible drops
in energy are observed. The lower panels show that the drops in energy are
accompanied by the formation of extended Frank-Kasper cluster. Clusters at
times marked with arrows are shown in Figure 6.10.

the crystal. Here, a connection is demonstrated. The reason why the liquid
and crystal can use the same kind of local arrangements is the complexity
of the crystal. The locally preferred arrangement can be assembled in many
ways, without forming a crystal. The liquid could be said to have “entropic
frustration”. This phrase is inspired by “geometric frustration”, used to explain
metastability of the single component Lennard-Jones liquid (in three dimen-
sions3). The locally preferred structure of the liquid is a perfect icosahedron.
Icosahedra cannot tile space to make a crystal, and the liquid is said to have
“geometric frustration” [Sadoc and Mosseri, 1999, Tarjus et al., 2005] (the crys-
tal has the face centered cubic structure). The locally preferred structure of a
liquid with entropic frustration can tile space, however, many non-crystal struc-
tures can also be build (high entropy). Other systems with some complexity
of the crystal could also have entropic frustration.

3In two dimensions the is no frustration of a single particle liquid. The locally preferred
structure is a hexagon. Hexagons can tile space to make a crystal.
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6. Stability of a binary mixture

Figure 6.10: Representative transient Frank-Kasper clusters. See the legend
of Figure 6.9 for details about the shown clusters. The cluster at the top is
dense and similar to the crystal. The middle cluster has a more open structure.
Note also the broken pentagon central in the cluster. This is not a feature of
the crystal, and will clearly hinder crystallization. The bottom cluster have an
even more open structure, not similar to the crystal.
70



Long-lived structural fluctuations stabilizing the liquid

Figure 6.11: Local composition, χfsB , of B particles. Note that a large com-
position fluctuation is associated with the formation of a single Frank-Kasper
bond.

Figure 6.12: Cluster analysis of 10% most long-lived first shells. The top panel
shows the cluster distribution at different temperatures. The lower left panel
shows that long-lives particles tends to be in large cluster. The lower panel to
the right shows that the characteristic cluster size increase when temperature
is lowered.
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6. Stability of a binary mixture

Figure 6.13: First shell of 10% most long-lived first shells. Note that particles
with coordination of Z=12 especially stable.

6.5 Kob-Andersen binary Lennard-Jones mixture

The crystallization of the Kob-Andersen binary Lennard-Jones liquid is dis-
cussed briefly in the following. The reader is referred to Paper XI for more
details.

For both the Wahnström and the Kob-Andersen binary Lennard-Jones liq-
uid the size ratio of particles is about 1.2. However, a difference is that the
latter strongly disobeys the Lorentz-Berthelot rule, resulting in a strong AB
attraction (see Figure 1.4 on page 6). Usually the Kob-Andersen mixture is
simulated at A4B1 composition where B refers to the smaller particle4, but if it
is simulated at AB composition it will quickly crystallize in a CsCl structure.
Figure 6.14 shows the distribution of first shells of the Kob-Andersen binary
Lennard-Jones liquid at the A4B1 composition. Note that strong AB attraction
reduce composition fluctuations (compare to the Wahnström mixture, Figure
6.6). This prevents the AB crystal from forming at χB = 0.20. However,
a composition fluctuation can lead to crystallization of A particles in a face
centered cubic (FCC) structure as demonstrated by Toxværd et al. [2007, and
Paper XI]. Crystallization into a pure FCC crystal of A particles and a mixed
CsCl crystal was foreseen by Fernandez and Harrowell [2003]. The FCC crystal
is simple with only a single particle in the unit-cell. Thus, the crystal do not
have the complexity of the Wahnström binary Lennard-Jones liquid, making
the crystallization mechanism simpler.

Crystallization is avoided, if the AA and BB pair potential is truncating at
the minimum and leave the AB pair potential untouched (Paper XI, simulations
conducted by Søren Toxvaerd). See Paper XI for more details on this.

4The standard notation is used for classifying small and large particles. For the Wahn-
ström liquid the larger particles are B’s and smaller particles are A’s. For the Kob-Andersen
liquid the standard notation is the opposite so larger particles are A’s and smaller particles
are B’s.
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Kob-Andersen binary Lennard-Jones mixture

Figure 6.14: First shells of the Kob-Andersen binary Lennard-Jones liquid.
Note that local composition fluctuations σχfsA are small compared the Wahn-
ström mixture, Figure 6.6. This is a consequence of strong AB attraction, see
text. The most frequent first shells are different from the crystal (CsCl and
pure A FCC), see text.
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Chapter 7

Outlook

As a summary of the thesis, this chapter provides a list of open questions and
future research projects that would be a natural continuation.

A: The model systems investigated (see Figure 2.3 on page 16) in the study
of thermodynamic fluctuations do not take quantum effects explicitly
into account. First principles molecular dynamics simulations (like the
method suggested by Car and Parrinello [1985]), would be valuable to
get a better understanding of the thermodynamic correlations of real
systems.

B: Strong W -U correlations of the Lennard-Jones liquid are explained by
an effective inverse power law (Chapter 3). Paper XIII test and confirms
the effective inverse power law explanation for the asymmetric dumbbell
model. However, this should also be done for more molecular systems.

C: The revising of the classical Prigogine-Defay ratio supported the con-
jecture of Section 2.2, that van der Waals bonded liquids are strongly
correlating liquids. This raises the question: What other kinds of liq-
uids are strongly correlating? Simulations of the metallic systems Cu
and MgCu exhibit correlation coefficients of RWU = 0.926 (T = 2340 K
and ρ = 125.8 mol/l) and RWU = 0.797 (T = 650 K and ρ = 85 mol/l)
respectively (Paper VIII). The metallic mixture ZrTiCuNiBe has a clas-
sic Prigogine-Defay ratio of Πclassic

pT = 2.4, corresponding to a correlation
coefficient of (Πclassic

pT )−1/2 = 0.65. Simulations and experiments can be
used to clarify if some metallic systems should be included in the class of
strongly correlating liquids.

D: Relaxation of strongly correlating viscous liquids are simpler than that
of viscous liquids in general. This has been demonstrated for relaxation
of thermodynamic quantities like V , E, p, T . It would be interesting if
structural quantities follow the same relaxation. This can be investigated
in simulations. In fact, some preliminary studies (data not shown) of the
Wahnström binary Lennard-Jones liquid suggest that the number of 12
coordinated A particles, NA12 , (Section 6.4) follows the (thermodynamic)
single parameter. If this is the case, it reasonable to refer to the single
parameter as a structural order parameter.
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7. Outlook

E: Let us assume that NA12 follows the (thermodynamic) single parameter.
Recall that 12-coordinated A particles were important for the stability
of the Wahnström binary Lennard-Jones liquid (Section 6.4). Thus, the
single parameter determines how fast the liquid relaxes at a given instant.
This may be related to the so-called internal clock of a viscous liquid
[Olsen et al., 2008].

F: Values of the static NpT response functions of the glass and liquid at
Tg can be found in litterateur for numerous liquids. These values can
not only be used to calculate the classical Progogine-Defay ratio (Table
4.1), but also estimate a γWU -slope (see Subsection 4.1.3 on 40). This
estimated γWU is expected to be equal to γs determined from scaling of
structural relaxation time (Section 4.2).

G: Figure 4.8 (page 45) shows scaling of the radial distribution function of
the Lewis-Wahnström OTP model of two state points with the same Γ.
However, the scaling is not perfect as seen in the inset zooming in on the
first peak. It is speculated that this is due to intramolecular bonds. This
should be investigated further.

H: As discussed in Section 4.1.3, the classical approach of investigating
strongly correlating viscous liquids is approximate. Experimentally mea-
sured frequency dependent or time dependent response function is a more
direct approach. This is an ongoing work of the Glass and Time group.

I: The study of phospholipid membranes demonstrated that strong correla-
tions are present in the slow thermodynamic fluctuations of membranes.
One caveat is that γŪV̄ is not the same for the ordered and the disordered
phase. This should be investigated further.

J: Other complex systems, where slow dynamics can be traced to a van der
Waals bonded region, could have strong thermodynamic correlations (on
some time scale). Proteins could be such systems.

K: Chapter 6 reports crystallization of the Lewis-Wahnström OTP model.
More work is needed to identify the crystal structure (Figure 6.1) and
to undertake a study of the crystallization. A part of this would include
defining an orderparameter. Understanding the crystallization mecha-
nism of this one-component system is interesting: Experimentally, OTP
shows an interesting mechanics for crystallization close to the glass tran-
sition. In the most of the supercooled regime, the growth rate is limited
by molecular diffusion. However, Mapes et al. [2006] have reported that
close to the glass transition crystal growth is not limited by diffusion, but
takes place faster. Apparently, local molecular motion is sufficient for the
crystal to form. It is an open question whether the Lewis-Wahnström
OTP model exhibits such crystallization mechanism.

L: Investigating the crystallization of the Wahnström binary Lennard-Jones
liquid in terms of Frank-Kasper bonds has translated a problem of pack-
ing into a problem of forming a network (Section 6.3). However, more
work should be made on clarifying which clusters leed to crystallisation
and which do not. This investigation may be compared with crystalliza-
tion of network forming liquids.
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Appendix A

Calculations

A.1 Energy-pressure correlations in a soft-sphere liquid

In soft-sphere liquid where particles interact via a inverse power-law potential
1;

Upowij = aijr
−n
ij . (A.1)

where rij is the distance between particle i and j, and ai,j ’s and b are constants.
The total potential energy of a system of N particles is

Upow =
N∑
i>j

Upowij (A.2)

The virial is given by

W =
1
3

∑
ih

rijFij (A.3)

where
Fij = − d

dr
Uij = naijr

−n
ij (A.4)

is the force between particle i and j. Thus, virial is proportional to potential
energy,

W pow(t) = γpowWUU
pow(t), (A.5)

with a proportionality constant of

γpowWU = n/3. (A.6)

A.2 Fitting inverse power-law to the generalized
Lennard-Jones potential

At distance rs (rs < 1) we can fit and inverse power-law plus a constant,

Upowij = ar−p + c, (A.7)

1Note that we here uses index ij on the prefactor aij for the sake of generality. So perfect
correlation goes for a poly-disperse system as well as a mono-disperse.
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A. Calculations

to the generalized Lennard-Jones potential (having a global minimum of −1 at
r = 1),

ULJij = (nr−m −mr−n)/(m− n), (A.8)

by matching pair energy (Uij), virial (Wij = −r ddrUij) and hyper-virial (Xij =

−r ddrWij). First, put
XLJ

ij (rs)

WLJ
ij (rs)

=
Xpow

ij (rs)

Wpow
ij (rs)

and isolate the exponent,

p = (mr−ms − nr−ns )/(r−ms − r−ns ). (A.9)

Then put WLJ
ij (rs) = W pow

ij (rs) and isolate the pre-factor,

a = mn(r−ms − r−ns )/[(m− n)pr−ps ]. (A.10)

Finaly put ULJ
ij (rs) = Upow

ij (rs) to get the constant,

c = (nr−ms −mr−ns )/(m− n)− ar−ps . (A.11)

If p is known and not rs, then isolate rs from equation A.9,

rs = [(n− p)/(m− p)]1/(n−m). (A.12)

The inverse power-law fitted to the standard Lennard-Jones potential (with
m = 12 and n = 6) at the characteristic distance rs = 2−1/6 where ULJij (rs) = 0
is

Upowij =
1
6
r−18 +

4
3
. (A.13)

Rescaling the Lennard-Jones potential to get the minimum to 21/6 (r′ = 21/6r)
we get

Upowij =
4
3
r′−18 +

4
3

(A.14)

shown on Figure 3.1 page 20.
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Single-order-parameter description of glass-forming liquids:
A one-frequency test

Niels L. Ellegaard, Tage Christensen, Peder Voetmann Christiansen, Niels Boye Olsen,
Ulf R. Pedersen, Thomas B. Schrøder, and Jeppe C. Dyre
DNRF Centre “Glass and Time,” IMFUFA (27), Department of Sciences, Roskilde University, Postbox 260,
DK-4000 Roskilde, Denmark
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Thermoviscoelastic linear-response functions are calculated from the master equation describing
viscous liquid inherent dynamics. From the imaginary parts of the frequency-dependent isobaric
specific heat, isothermal compressibility, and isobaric thermal expansion coefficient, we define a
“linear dynamic Prigogine-Defay ratio” �Tp��� with the property that if �Tp���=1 at one frequency,
then �Tp��� is unity at all frequencies. This happens if and only if there is a single-order-parameter
description of the thermoviscoelastic linear responses via an order parameter �which may be
nonexponential in time�. Generalizations to other cases of thermodynamic control parameters than
temperature and pressure are also presented. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2434963�

I. INTRODUCTION

A famous result of classical glass science is that if a
glass-forming liquid is described by a single-order param-
eter, the Prigogine-Defay ratio is unity. Recall that if �cp is
the difference between liquid and glass isobaric specific heat
per unit volume at the glass transition temperature Tg, ��T

the similar liquid-glass difference of isothermal compress-
ibilities, and ��p the difference of isobaric thermal expan-
sion coefficients, the Prigogine-Defay ratio � is defined1–3

by

� =
�cp��T

Tg���p�2 . �1�

Both experimentally and theoretically the following inequal-
ity was established early on: ��1.1–9 The vast majority of
reported �’s are significantly larger than unity,10 and for de-
cades the consensus has been that—possibly with a few
exceptions11,12—a single-order parameter is not sufficient for
describing glass-forming liquids.

The above picture came about as follows. The glass tran-
sition is a freezing of configurational degrees of freedom. If
kinetic aspects are ignored, the glass transition has the ap-
pearance of a second-order phase transition in the Ehrenfest
sense with continuity of volume and entropy, but discontinu-
ity of their thermodynamic derivatives. If the “order param-
eters” �numbers characterizing the structure� are denoted by
z1 , . . . ,zk, these are frozen in the glass phase. In the equilib-
rium liquid phase the order parameters depend on pressure
and temperature, a dependence that is determined by mini-
mizing Gibbs free energy G�T , p ,z1 , . . .zk�: �G /�zi=0.3 In
the classical papers by Davies and Jones from the 1950s1,2 it
was shown that within this framework one always has �
�1 and that �=1 if there is just a single-order parameter.
The simplest dynamics for the approach to equilibrium for
the order parameters żi=−�i�G /�zi imply exponential de-
cays for each order parameter for small perturbations from

equilibrium. Under this assumption, in the case of just one
order parameter any quantity relaxes exponentially to equi-
librium after a small disturbance. Exponential relaxations of
the macroscopic variables are seldom observed, although
there is evidence that relaxation is often intrinsically expo-
nential so that the nonexponential behavior comes from a
distribution of exponential relaxations.13–15 This reflects dy-
namic heterogeneity. Historically the fact that macroscopic
relaxations are nonexponential was often taken as confirming
the conventional wisdom that one order parameter is rarely
not enough.—Besides the reported Prigogine-Defay ratios
being almost always significantly larger than unity, a further
classical argument for the necessity of more than one order
parameter is the following:16 If structure were characterized
by a single-order parameter, glasses with the same index of
diffraction would also have all other physical properties
identical, which is not the case. This does not rule out the
possibility that a single-order parameter is sufficient to de-
scribe the linear thermoviscoelastic response of the viscous
liquid phase, however, and it is this possibility we shall in-
quire into in the present paper.

Because kinetic aspects cannot be ignored, the glass
transition is not a phase transition. Thus, there is no exact Tg

and strictly speaking the � of Eq. �1� is not well defined.
This is because the properties of a glass depend to some
extent on the cooling history; moreover, extrapolations from
the glass phase are somewhat ambiguous because glass prop-
erties change slightly with time. Thus the changes in specific
heat, etc., found by extrapolating glass and liquid specific
heats from below and above, respectively, to Tg �Ref. 17� are
not rigorously well defined. This weakens the generally ac-
cepted conclusion that in the vast majority of cases there
must be more than one order parameter.

The problem of making the Prigogine-Defay ratio rigor-
ously well defined is solved by referring exclusively to
linear-response experiments on the equilibrium viscous liq-
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uid phase.16,18,19 In viscous liquids, thermodynamic coeffi-
cients are generally frequency dependent, cp=cp���, etc. The
high-frequency limits reflect glassy behavior where relax-
ations do not have enough time to take place, corresponding
to “frozen” structure. Thus for the equilibrium viscous liquid
phase at any given temperature T one redefines Eq. �1� to be
the “linear Prigogine-Defay ratio” given16,18,19 by

� =
�cp��→ 0� − cp��→ �����T��→ 0� − �T��→ ���

T��p��→ 0� − �p��→ ���2 .

�2�

Descriptions of viscous liquids and the glass transition
by means of one or more order parameter were actively dis-
cussed in the 1970s.16,18–22 Since the � of Eq. �1� is not well
defined and since there are no measurements of the linear
Prigogine-Defay ratio of Eq. �2�, the question of one or more
order parameters remains open.23,24 In our view, there are a
number of reasons to take seriously the possibility that some
glass-forming liquids may be described by a single order
parameter: �1� In early computer simulations Clarke reported
Prigogine-Defay ratios close to one for a 216 particle
Lennard-Jones model of Argon.25 This is not a highly vis-
cous liquid, but recent extensive simulations by Sciortino
and coworkers of viscous liquids confirmed this scenario by
showing that structural relaxations for small temperature
changes are basically controlled by a single parameter �e.g.,
the volume�.26–29 �2� Experiments monitoring loss peak fre-
quency and loss maximum of the Johari-Goldstein dielectric
beta relaxation process upon temperature jumps revealed a
striking correlation between these two quantities, a correla-
tion which is difficult to explain unless structure is param-
etrized by a single-order parameter.30 In these experiments
the relaxation of beta process properties is controlled by the
alpha relaxation time. This is to be expected because the
alpha time is the structural relaxation time, but it is highly
nontrivial that alpha and beta relaxations correlate in equilib-
rium viscous liquids, as shown recently by Böhmer and
coworkers;31 this may be taken as a further indication that a
single order parameter controls the behavior. �3� Experi-
ments studying dielectric relaxation under varying tempera-
ture and pressure conditions showed that the shape of the
alpha loss peak as quantified by the stretching exponent 	
depends only on the loss peak frequency.32 This could be a
consequence of there being just one order parameter, deter-
mining both alpha relaxation time and stretching. �4� Finally,
we would like to mention theoretical works suggesting that
the Prigogine-Defay ratio may be unity in some cases.23,33,34

More speculatively, in our opinion it would not be too sur-
prising if there is just one order parameter for liquids where
time-temperature superposition applies accurately, because in
these liquids linear relaxations appear to be particularly
simple with a generic �−1/2 high-frequency decay of, e.g., the
dielectric and mechanical alpha loss peaks.35,36

The wide-frequency measurements required to deter-
mine � of Eq. �2� will probably be difficult to perform in the
foreseeable future. There are, in fact, no measurements of all
three required frequency-dependent thermoviscoelastic
linear-response functions. Work at our laboratory indicates

that such measurements are possible,37 but only over a lim-
ited frequency range. This motivates a search for an alterna-
tive to the linear Prigogine-Defay ratio. In this article, we
introduce a “linear dynamic Prigogine-Defay ratio” �where
the double prime indicates the imaginary part of the corre-
sponding frequency-dependent linear-response function�:

�Tp��� =
cp�����T����
T0��p�����2 . �3�

Based on the description of viscous liquid dynamics in terms
of Markovian inherent dynamics, in Secs. II and III we prove
that �Tp���=1 if and only if the linear Prigogine-Defay ratio
�Eq. �2�� is unity. This happens if and only if there is a single,
generally nonexponential order parameter. Moreover, it is
proved that if �Tp���=1 at one frequency, this is true at all
frequencies. In Sec. IV we investigate the matter in a ther-
modynamic approach and prove that in this framework the
existence of a single-order parameter implies that �Tp���
=1 at all frequencies. In the Appendix it is shown that
�Tp��� is just one out of a family of four linear dynamic
Prigogine-Defay ratios larger than or equal to one, which
equal unity if and only if there is a single order parameter.

II. RESPONSE MATRIX FOR MARKOVIAN INHERENT
DYNAMICS

Adopting the energy landscape approach to viscous liq-
uid dynamics38 we model the liquid �henceforth: “system”�
by the inherent dynamics consisting of jumps between the
potential energy minima.29,39–41 This description is believed
to be realistic in the highly viscous phase where there is a
clear separation between the vibrational time scales �in the
picosecond range� and the �alpha� relaxation time scale—the
time scale of interest here. If the system has N potential
energy minima, an ensemble of similar systems is described
by a vector of probabilities P = �P1 , P2 , . . . , PN�, where Pn

denotes the fraction of systems vibrating around energy
minimum n. If Gn�T , p� denotes the vibrational Gibbs free
energy of minimum n, the P-dependent Gibbs free energy is
defined39 by

G�T, p, P� = �
n

Pn�Gn�T,p� + kBT ln Pn� . �4�

Via the standard thermodynamic identities the P-dependent
entropy S and volume V are given by

S�T, p, P� = − �
n

Pn� �Gn

�T
+ kB ln Pn� ,

�5�

V�T, p, P� = �
n

Pn
�Gn

�p
.

It is convenient to introduce the notation X = �T , − p� for the
controlled �“input”� variables and Q = �S , V� for the induced
responses �“output”�. Thus
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Q� = −
�G

�X�

, � = 1, 2. �6�

The equilibrium probability distribution is found by mini-
mizing G�T , p , P� under the constraint �n Pn=1; this
leads42 to the well-known canonical probabilities �where
G�T , p� is the Gibbs free energy of Eq. �4� evaluated at the
equilibrium probabilities�

Pn
eq�T, p� = exp�−

Gn�T, p� − G�T, p�
kBT

� . �7�

Inherent dynamics consist of transitions between
minima.41 The inherent dynamics are modeled as a Markov
process; thus the probabilities obey a standard master
equation43

Ṗn = �
m

WnmPm. �8�

The rate matrix W and the equilibrium probability distribu-
tion Pn

eq both depend on T and p, and for all n one has

�
m

Wnm�T, p�Pm
eq�T, p� = 0. �9�

In the following the variables T and p are assumed to vary
slightly from their average values T0 and p0 as arbitrary
externally-controlled functions of time, resulting in small
changes of S and V. Examining perturbations around the ref-
erence state X0= �T0 , − p0� it is convenient to introduce the
notation Wnm

0 �Wnm�T0 , p0� and Pn
0� Pn

eq�T0 , p0�. If 
 de-
notes perturbations from the reference state, Pn�t�= Pn

0

+
Pn�t�, etc., Eq. �8� implies to first order


Ṗn = �
m

�Wnm
0 
Pm + 
WnmPm

0 � . �10�

Since 
��m WnmPm
eq�=0 �Eq. �9��, one has �m
WnmPm

0

=−�mWnm
0 
Pm

eq. When this is substituted into Eq. �10� we get


Ṗn = �
m

Wnm
0 �
Pm − 
Pm

eq� . �11�

Next, we expand 
Pm
eq in terms of 
X�. Equations �5� and �7�

imply44 �where 	=1, 2 and 
	1 is the Kronecker delta sym-
bol�

� ln Pm
eq

�X	

=
1

kBT
� �Q	

�Pm
− Q	 + 
	1kB� . �12�

Thus to lowest order


Pm
eq =

Pm
0

kBT0
	� �Q1

�Pm
− Q1 + kB�
X1 + � �Q2

�Pm
− Q2�
X2
 .

�13�

Inserting this into Eq. �11� and utilizing Eq. �9� we arrive at
the following “equation of motion” for the probabilities
when temperature and pressure vary slightly as arbitrary
functions of time �
X	�
X	�t��:


Ṗn = �
m

Wnm
0 �
Pm −

1

kBT0
�
	

Pm
0 �Q	

�Pm

X	� . �14�

Consider now a harmonic linear perturbation of the sys-
tem. In relaxing systems like glass-forming liquids the ordi-
nary thermodynamic response functions are frequency de-
pendent and complex. Writing T�t�=T0+Re�
T ei�t� and
p�t�= p0+Re�
p ei�t�, the oscillations of S and V are simi-
larly described by S�t�=S0+Re�
S ei�t� and V�t�=V0

+Re�
V ei�t�. If 
Pn and 
X	 denote the �complex�
frequency-dependent amplitudes, in steady state Eq. �14� im-
plies that

�
n

�Wln
0 − i�
ln�
Pn =

1

kBT0
�
m,	

Wlm
0 Pm

0 �Q	

�Pm

X	. �15�

For ��0 we solve Eq. �15� by defining �where I is the
identity matrix�

Anm��� =
1

kBT0
�

l

�W0 − i�I�nl
−1Wlm

0 Pm
0 , �16�

leading to the following equation for the frequency-
dependent complex probability amplitudes:


Pn = �
m,	

Anm���
�Q	

�Pm

X	. �17�

In order to calculate the thermoviscoelastic linear-response
functions we first define J�	

� = ��Q� /�X	�. This symmetric 2
�2 matrix gives the instantaneous �glassy� linear response
because it determines the variations of S and V when the
probabilities Pn are frozen.39 Next, we expand the frequency-
dependent complex amplitudes 
Q� to get


Q� = �
n

�Q�

�Pn
�T0, p0�
Pn + �

	

J�	
� 
X	. �18�

Here and henceforth, for any function f the notation
f�T0 , p0� for a variable that also depends on the probabilities
P signifies that f is evaluated at the equilibrium probabilities
�Eq. �7��. When Eq. �17� is inserted into Eq. �18�, we get


Q� = �
	

J�	���
X	, �19�

where

J�	��� = J�	
� + �

m,n

�Q�

�Pn
�T0,p0�Anm���

�Q	

�Pm
�T0,p0� . �20�

Since Anm��→��=0 it follows that J�	��→��=J�	
� , justi-

fying the notation.
We proceed to show that the 2�2-matrix J�	��� is sym-

metric. Introducing the matrix Ynm defined by

Ynm = �Pn
0�−1/2Wnm

0 �Pm
0 �1/2, �21�

the detailed-balance requirement implies that Y is
symmetric.43,45 For later use we note that Y is negative
semidefinite:43 For all vectors x one has �x�Y�x0. More-
over, equality applies if and only if x� �P0�1/2; the latter
property of Y expresses “ergodicity,” i.e., the assumption
about the master equation that all states are connected by
some sequence of transitions. We define a diagonal matrix R
by
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Rnm = �Pn
0�1/2
nm �22�

and note that W0=RYR−1. This implies that

A��� =
1

kBT0
�W0 − i�I�−1W0R2

=
1

kBT0
�R�Y − i�I�R−1�−1RYR

=
1

kBT0
R�Y − i�I�−1YR . �23�

Since Y and R are both symmetric, it follows that A��� is
symmetric. Thus by Eq. �20� the 2�2 matrix J�	��� is sym-
metric.

The J�	��� matrix determines the frequency-dependent
thermoviscoelastic linear response defined as follows: If
cp��� denotes the isobaric heat capacity per unit volume,
�p��� the isobaric thermal-expansion coefficient, and �T���
the isothermal bulk compressibility, the complex frequency-

dependent coefficients 
T, 
p, 
S, and 
V are related by the
following matrix �the symmetry of which reflects the sym-
metry of J�	����:

�
S


V
� = V0�cp���/T0 �p���

�p��� �T���
�� 
T

− 
p
� . �24�

Whenever there is time-reversal invariance, the �dc, i.e.,
zero-frequency� symmetry implied by a Maxwell relation
translates into �ac� Onsager reciprocity, a well-known
result.43,45

III. LINEAR DYNAMIC PRIGOGINE-DEFAY RATIO

We proceed to calculate the linear Prigogine-Defay ratio
of Eq. �2� from the expression for the frequency-dependent
linear response functions. Since Anm���=0, we find by in-
serting Eq. �20� into Eq. �2� �with T=T0 and where �S /�Pn

��S /�Pn�T0 , p0� and �V /�Pn��V /�Pn�T0 , p0� but
“�T0 , p0�” is left out for brevity�

� =
��m,n

�S

�Pn
Anm�0�

�S

�Pm
���m,n

�V

�Pn
Anm�0�

�V

�Pm
�

��m,n

�S

�Pn
Anm�0�

�V

�Pm
�2 . �25�

Next we reason in a way analogous to that of Davies and Jones2 based on the Cauchy-Schwartz inequality. This inequality is
the well-known mathematical theorem that if a real symmetric matrix B is positive or negative semidefinite, the following
applies: For any vectors x and y one has �x�B�y2 �x�B�x�y�B�y, and for nonzero x and y equality applies if and only if a
number � exists such that x−�y�N�B� where N�B� is the kernel �null space� of B. The matrix A�0� is positive semidefinite
and the kernel of A�0� is the one-dimensional linear subspace spanned by the vector �1, . . . ,1�.46 This implies that ��1 and
that �=1 if and only if there are constants � and c such that the following equations apply for all n �compare Refs. 2, 5, and
47�:

�V

�Pn
�T0, p0� = �

�S

�Pn
�T0, p0� + c . �26�

For reasons given in the next section this situation is referred to as the single-order-parameter case.
As mentioned in the Introduction, the linear Prigogine-Defay ratio of Eq. �2� is difficult to measure. Instead we propose to

consider the “linear dynamic Prigogine-Defay ratio” defined in Eq. �3�. When Eq. �20� is inserted into this we find

�Tp��� =
��m,n

�S

�Pn
Anm� ���

�S

�Pm
���m,n

�V

�Pn
Anm� ���

�V

�Pm
�

��m,n

�S

�Pn
Anm� ���

�V

�Pm
�2 . �27�

Because the matrix A���� is negative semidefinite for all �

�0,46 the Cauchy-Schwartz inequality implies that �Tp���
�1. Again, equality applies if and only if a number � exists
such that the vector with nth component �V /�Pn−��S /�Pn

is in the kernel of the matrix A����, which is the one-
dimensional space spanned by the vector �1, . . . ,1�.46 Thus
for all ��0 the equation �Tp���=1 is mathematically
equivalent to Eq. �26�, and �Tp���=1 is equivalent to �=1.

In particular, if �Tp��� is unity at one frequency, �Tp��� is
unity for all frequencies—and this happens precisely when
�=1.

IV. WHY �=1 CORRESPONDS TO A SINGLE ORDER
PARAMETER

We define the order parameter � by
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��t� = �
n

�S

�Pn
�T0, p0�
Pn�t� . �28�

Combining Eq. �28� with Eqs. �18� and �26� we find that in
any linear experiment �thus calculating to lowest order� S
and V are functions of T, p, and 
� �where J12

� =J21
� �


S�t� = 
��t� + J11
� 
T�t� − J12

� 
p�t� ,

�29�

V�t� = �
��t� + J21

� 
T�t� − J22
� 
p�t� .

The situation described by these equations is more general
than the single-order parameter model of Prigogine and
Meixner,3,48 because Eq. �29� allows for an order parameter
with nonexponential dynamics. The common physics, how-
ever, are that besides T and p one single number determines
both entropy and volume fluctuations. In the present ap-
proach � might well have a memory of the thermal prehis-
tory.

By the definition we shall adopt here, the single-order-
parameter situation applies whenever Eq. �29� is obeyed for
some variable 
�. In the last section we proved that if
�Tp���=1 applies at one frequency, then Eq. �29� follows.
We proceed to show that conversely, if Eq. �29� applies for
some order parameter �, then �Tp���=1 for all �. To prove
this, consider a situation with periodically varying tempera-
ture and pressure fields. In steady state 
S, 
V, and 
� vary
periodically with complex amplitudes 
S���, 
V���, and

����. According to Eq. �29� these amplitudes are given by
�for any ��


S��� = 
���� + J11
� 
T��� − J12

� 
p��� ,

�30�

V��� = �
���� + J21

� 
T��� − J22
� 
p��� .

In the case where only temperature varies, comparing to Eq.
�24� shows that the following two equations apply:

V0

T0
cp��� = � 
S���


T���
�

p
= � 
����


T���
�

p
+ J11

� ,

�31�

V0�p��� = �
V���

T���

�
p

= �� 
����

T���

�
p

+ J21
� .

Since the J�’s are real numbers, we have

�
cp����

T0
= �p���� . �32�

Similarly, if only pressure varies Eqs. �30� and �24� imply

V0�p��� = − �
S���

p���

�
T

= − �
����

p���

�
T

+ J12
� ,

�33�

V0�T��� = − �
V���

p���

�
T

= − ��
����

p���

�
T

+ J22
� ;

thus

��p���� = �T���� . �34�

Eliminating � by combining Eqs. �32� and �34� yields
�Tp���=1 for any �. Note that in the case of one order

parameter the imaginary �“loss”� parts of all three response
functions are proportional.

The above line of reasoning can be repeated for different
choices of input and output variables. Altogether there are
four different natural �linear� dynamic Prigogine-Defay ra-
tios as demonstrated in the Appendix; here it is also shown
that the requirement of positive dissipation implies that no
dynamic Prigogine-Defay ratio can be smaller than unity.

V. CONCLUDING REMARKS

The original Prigogine-Defay ratio of Eq. �1� is not rig-
orously well defined. The “linear” Prigogine-Defay ratio of
Eq. �2� is well defined, but requires measurements of ther-
moviscoelastic response functions over many decades of fre-
quency. There are still no methods for measuring a complete
set of these response functions. Hopefully such measure-
ments are possible in the near future, but realistically they
will initially only cover a few decades.37 This motivates the
one-frequency criterion proposed and developed mathemati-
cally in this article: If the linear dynamic Prigogine-Defay
ratio is unity at one frequency, this quantity is unity at all
frequencies and a single-order parameter description applies.
Conversely, if a single-order parameter description applies,
the dynamic Prigogine-Defay ratio is unity at all frequencies.
If this happens, the imaginary parts of the three linear re-
sponse functions of Eq. �24� are proportional. As shown in
the Appendix, these results all generalize to the three other
natural choices of input and output variables. These are strict
mathematical statements; in practice one cannot determine
whether or not the dynamic Prigogine-Defay ratio is pre-
cisely one. What one can do is test how close to unity is this
quantity. We expect that a single-parameter description is a
good approximation whenever the dynamic Prigogine-Defay
ratio is close to unity. Note that if there are several relaxation
processes with well-separated time scales, it is possible that
some of these are well described by a single-order parameter,
though not perfectly, whereas others are not. In this case the
frequency-dependent one-parameter test developed here in
principle would be useful although, as mentioned already, it
will probably not be possible in the foreseeable future to
determine all three required response functions over wide
frequency ranges.

In the present paper we referred to the �Tp=1 situation
as that of a single, generally nonexponential order parameter.
As emphasized by Goldstein,5 however, due to a mathemati-
cal equivalence it is really a matter of taste whether one
prefers instead to refer to a situation of several order param-
eters obeying a mathematical constraint �in our case Eq.
�26��. It is not possible a priori to estimate how restrictive or
unlikely it is that Eq. �26� applies; only experiment can settle
this question. It should be noted, though, that there is a
simple physical interpretation of the single-order parameter
case: In the approximation where each inherent state is re-
garded as a potential energy minimum with a harmonic po-
tential, via Eqs. �5� and �7�, Eq. �26� is equivalent to Vn

=�1En+�2 where Vn is the inherent state volume and En the
inherent state energy �potential energy minimum�. Thus there
is a single-order parameter if and only if inherent state vol-
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ume correlates perfectly and linearly with inherent state en-
ergy �in practice: for the dominant fluctuations at a given
temperature�. It is expected that this condition is obeyed to a
good approximation if and only if the dynamic Prigogine-
Defay ratio is close to unity.
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APPENDIX: GENERALIZATIONS TO OTHER
CONTROL VARIABLES

Standard thermodynamics give rise to a number of �dc�
linear-response coefficients. If the thermodynamic variables
of interest are T , p , S , V, there are 24 coefficients of the
form ��a /�b�c with a , b, and c chosen among T , p , S , V.49

These coefficients form 12 pairs that are trivially related by
inversion �e.g., ��a /�b�c=1/ ��b /�a�c�. As is well known, the
12 coefficients are not all independent, but related by various
Maxwell relations �given below�. There are the following
eight basic linear-response coefficients �where the specific
heats are per unit volume and the last three coefficients have
no generally accepted names�:

isochoric specific heat: cV �
T

V
� �S

�T
�

V

;

isobaric specific heat: cp �
T

V
� �S

�T
�

p

;

isothermal compressibility: �T � −
1

V
� �V

�p
�

T

;

adiabatic compressibility: �S � −
1

V
� �V

�p
�

S

;

�A1�
isobaric expansion coefficient:

�p �
1

V
� �V

�T
�

p

= −
1

V
� �S

�p
�

T

;

“adiabatic contraction coefficient: ”

�S � −
1

V
� �V

�T
�

S

=
1

V
� �S

�p
�

V

;

“isochoric pressure coefficient: ”

	V � � �p

�T
�

V

= � �S

�V
�

T

;

“adiabatic pressure coefficient: ”

	S � � �p

�T
�

S

= � �S

�V
�

p

.

Consider harmonically varying scalar thermal and me-
chanical perturbations of equilibrium for a small volume el-
ement. “Small” here means that its linear dimensions are
much smaller than both the heat diffusion length and the
sound wavelength corresponding to the frequency under con-
sideration, implying that the perturbations may be regarded
as homogeneous over the small volume element. Let

T��� , 
p��� , 
s��� , 
v��� denote the complex amplitudes
of perturbations varying with time as � exp�i�t� and define
the intensive variables v�V /V0 and s�S /V0 where V0 is the
equilibrium volume. If small perturbations around tempera-
ture T0 are considered, following Eq. �A1� one defines the
following complex frequency-dependent linear-response
quantities �where according to the so-called correspondence
principle50 all thermodynamic relations survive and the Max-
well relations become Onsager reciprocity relations48�:

isochoric specific heat: cV��� � T0� 
s���

T���

�
V
;

isobaric specific heat: cp��� � T0� 
s���

T���

�
p
;

isothermal compressibility: �T��� � − �
v���

p���

�
T
;

adiabatic compressibility: �S��� � − �
v���

p���

�
S
;

�A2�
isobaric expansion coefficient:

�p��� � � 
v���

T���

�
p

= − � 
s���

p���

�
T
;

“adiabatic contraction coefficient: ”

�S��� � − � 
v���

T���

�
S

= � 
s���

p���

�
V
;

“isochoric pressure coefficient: ”

	V��� � � 
p���

T���

�
V

= � 
s���

v���

�
T
;

“adiabatic pressure coefficient: ”

	S��� � � 
p���

T���

�
S

= � 
s���

v���

�
p
.

The general procedure now works as follows. Let
�
X��� ,
Y���� denote the amplitudes of two periodically
varying thermodynamic variables considered as control vari-
ables and �
Z��� ,
W���� the remaining two periodically
varying variables. The relationship between the two sets of
variables generally takes the form
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� 
Z���

W���

� = �a11��� a12���
a21��� a22���

��
X���

Y���

� . �A3�

In the case of a single order parameter �—compare to Eq.
�30�—we can write �where the 2�3-matrix is real and fre-
quency independent�

� 
Z���

W���

� = �a11
� a12

� b1

a21
� a22

� b2
��
X���


Y���

����

� . �A4�

Comparing to Eq. �A3�, when Y does not vary we get

�a11��� = a11
� + b1� 
����


X���
�

Y

a21��� = a21
� + b2� 
����


X���
�

Y

� ⇒
a21� ���
a11� ���

=
b2

b1
� �XY ,

�A5�

and when X does not vary

�a12��� = a12
� + b1� 
����


Y���
�

X

a22��� = a22
� + b2� 
����


Y���
�

X

� ⇒
a22� ���
a12� ���

=
b2

b1
= �XY .

�A6�

In principle there are six different choices of control vari-
ables. Below we treat the four natural cases where the input
variables consist of one from the �S ,T� “energy bond”51,52

and one from the �−p ,V� energy bond, and similarly for the
output variables. In each case the signs are chosen to make
the response matrix symmetric. Via Eqs. �A5� and �A6� in
each of the four cases the three imaginary �loss� parts of the
relevant linear-response functions are proportional. The four
cases are detailed below, where the explicit amplitude fre-
quency dependence is left out for simplicity of notation.

1. Control variables �T and −�p

This case was considered in the main paper, but is in-
cluded here for completeness

�
s


v
� = �cp���/T0 �p���

�p��� �T���
�� 
T

− 
p
� . �A7�

Applying Eqs. �A5� and �A6� to this we get

T0�p����
cp����

= �Tp =
�T����
�p����

, �A8�

and thus

�Tp��� �
cp�����T����
T0��p�����2 = 1. �A9�

2. Control variables �s and �v

� 
T

− 
p
� = � T0/cV��� − 1/�S���

− 1/�S��� 1/�S���
��
s


v
� . �A10�

Applying Eqs. �A5� and �A6� to this we get

−
�1/�S�����
�T0/cV�����

= �SV = −
�1/�S�����
�1/�S�����

�A11�

and thus

�SV��� �
�T0/cV������1/�S�����

��1/�S������2 = 1. �A12�

3. Control variables �s and −�p

� 
T

− 
v
� = � T0/cp��� − 1/	S���

− 1/	S��� − �S���
�� 
s

− 
p
� . �A13�

Applying Eqs. �A5� and �A6� to this we get

−
�1/	S�����
�T0/cp�����

= �Sp =
�S����

�1/	S�����
�A14�

and thus

�Sp��� � −
�T0/cp������S����

��1/	S������2 = 1. �A15�

4. Control variables �T and �v

� 
s

− 
p
� = �cV���/T0 − 	V���

− 	V��� − 1/�T���
�� 
T

− 
v
� . �A16�

Applying Eqs. �A5� and �A6� to this we get

−
T0	V����

cV����
= �TV =

�1/�T�����
	V����

�A17�

and thus

�TV��� � −
cV�����1/�T�����

T0�	V�����2 = 1. �A18�

For each case we showed above that, if there is a single-
order parameter, the dynamic Prigogine-Defay ratio is unity.
Below we proceed to prove that, conversely, if one of the
dynamic Prigogine-Defay ratios is unity at some frequency,
then this dynamic Prigogine-Defay ratio is unity at all fre-
quencies and there is a single-order parameter. In particular,
if one dynamic Prigogine-Defay ratio is unity at one fre-
quency, all dynamic Prigogine-Defay ratios are unity at all
frequencies.

In the periodic situation the dissipation is proportional to
Im�
T���
s����−
p���
v�����.48,53 The requirement of
positive dissipation implies that all four dynamic Prigogine-
Defay ratios are larger than or equal to unity; this follows by
considering the special case of in-phase input variables in
which case it is easy to show that the determinant of the
imaginary response matrix must be non-negative to have
positive dissipation. If one of the dynamic Prigogine-Defay
ratios is unity at some frequency �, the determinant of the
imaginary part of the corresponding response matrix is zero.
This implies that there is an eigenvector of the imaginary
response matrix with zero eigenvalue. Thus the dynamic
Prigogine-Defay ratio is unity if and only if a thermody-
namic cycle exists with zero dissipation. It follows that, if in
one of cases 2–4 the dynamic Prigogine-Defay ratio is unity
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at frequency �, then �Tp���=1. This implies that �Tp���
=1 at all frequencies �Sec. III�, and that there is a single
order parameter � such that S and V are given by Eq. �29�.
These equations are easily rewritten to give the required out-
put variables in terms of the input variables and �. This im-
plies that the relevant dynamic Prigogine-Defay ratio is unity
at all frequencies, and that all other dynamic Prigogine-
Defay ratios are also unity at all frequencies.
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Crystallization of the Wahnström Binary Lennard-Jones Liquid

Ulf R. Pedersen, Nicholas P. Bailey, Jeppe C. Dyre and Thomas B. Schrøder
DNRF Centre “Glass and Time”, IMFUFA, Department of Sciences,

Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
(Dated: February 5, 2008)

We report observation of crystallization of the glass-forming binary Lennard-Jones liquid first used
by Wahnström [G. Wahnström, Phys. Rev. A 44, 3752 (1991)]. Molecular dynamics simulations
of the metastable liquid on a timescale of microseconds were performed. The liquid crystallized
spontaneously. The crystal structure was identified as MgZn2. Formation of transient crystallites is
observed in the liquid. The crystallization is investigate at different temperatures and compositions.
At high temperature the rate of crystallite formation is the limiting factor, while at low temperature
the limiting factor is growth rate. The melting temperature of the crystal is estimated to be
Tm = 0.93 at ρ = 0.82. The maximum crystallization rate of the A2B composition is T = 0.60±0.02.

PACS numbers: 64.70.Pf, 64.70.Dv, 71.15.Pd, 61.50.Ah, 61.66.f

The use of computer models of liquids has played an
important role for understanding glass forming-liquids.
Computationally undemanding models are attractive,
since long simulation times are important. Further more,
the model does not have to be specific since the glass
transition is universal. A simple model for molecular
interactions is the the famous Lennard-Jones pair po-
tential, Uij(rij) = 4ε((rij/σij)12 − (rij/σij)6). It is not
possible to investigate a single component Lennard-Jones
liquid close to the glass transition since the structural re-
laxation time is of the same order as the crystallization
time. This can be avoided by using a binary Lennard-
Jones liquid where the liquid consists of two kind of
particles with differend radii σij and binding energy εij
[1, 2]. In 1991 Wahnström suggested parameters for a
binary Lennard-Jones liquid in order to investigate the
metastable undercooled liquid [1]. In the following years
the model has been used by several others as a standard
liquid [3, 4, 5, 6, 7, 8, 9, 10].

Increasing computer power expands the time scale that
can be simulated. On a time scale of microseconds, the
Wahnström liquid is no longer meta-stable, but crystal-
lizes. In this paper we report observations of formations
of crystallites and growth. It is possible to investigate
a liquid, a highly viscous metastable liquid, a glass and
crystallization within the same model. There is a sep-
aration of phonons, structural relaxation, formation of
crystallites, and crystal growth in time.

The classical understanding of the crystallization pro-
cess is as follows [11]. Crystallization consists of two
events: formation of a critical crystallite and subsequent
growth. The free energy of a crystallite (below the melt-
ing temperature) consists of a positive surface part and
a negative volume part. Crystallites below a critical size
are unstable since the surface part will dominate. When
a crystallite is above the critical size, the volume part
will dominate, and the crystallite will grow.

We have performed molecular dynamics simulations
of the binary Lennard-Jones liquid suggested by Wahn-

ström [1]. Particles interact via the Lennard-Jones pair
potential. The system consists of two types of parti-
cles labelled A and B. Energy is reported in units of
εAA, length in units of σAA, mass in units of mA, tem-
perature in units of T = εAA/kB , and time in units of
t∗ = σAA

√
mAA/εAA. Type B particles have a larger

radius than type A particles, σBB = 6
5σAA and σAB =

1
2 (σBB+σAA) = 1.1σAA and twice the mass, mB = 2mA.
All binding energies are equal, εAA = εBB = εAB .

We define Argon units such that A particles may be
considered to be Argon molecules; εAA = 1 kJ/mol,
σAA = 0.34 nm mA = 40 g/mol, εAA/kB = 120.27 K
and t∗ = 2.15 ps.

The simulations were performed using Gromacs soft-
ware [12]. A switch function from 2.0σAA to 3.5σAA was
used to make potential go smoothly to zero at 3.5σAA.
Periodic boundaries were imposed. The Verlet velocity
integrator with a time step of 0.01t∗ were used. The
temperature was held constant using the Nosé-Hoover
thermostat [13]. The density were N/V = 0.75σ−3

AA and
NA = NB = 512. This is the same density and NA/NB
ratio as originally used by Wahnström [1], but twice the
size. We also performed simulations with NA = 2NB and
a density of 0.82σ−3

AA. The program VMD was used for
visualization [14].

Fig. 1 shows the potential energy per particle as a func-
tion of time for independent samples at T = 0.624 and
T = 0.599. The composition was AB. At T = 0.624 the
total simulation time covers 15 µs or in the order of 104τα
structural relaxation times. One of the samples show a
dramatic drop in energy due to crystallization. Crys-
tallization is a rare event at this temperature but more
common at the lower temperature. The samples that do
not crystallize show some transient drops in energy. This
can be explained as formation of small crystallites. This
was confirmed by a common neighbor analysis (data not
shown) [15].

The bottom panel on Fig. 1 show the quenched struc-
ture of the crystallized sample. A crystal with a few
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FIG. 1: The two top panels show the potential energy per
particle as a function of time for independent runs at two
temperatures with NA = NB = 512. Several of the samples
show a dramatic drop in energy due the growth of crystallites.
At T = 0.624 the total simulation time of liquid is t = 13 µs
(we made nine samples, not all data are shown), but only
one sample crystallizes. The inset on the top panel shows a
transient drop in energy which can be identified as temporary
formation of a crystallite. At T = 0.599 crystallization hap-
pens more often. The bottom panel the quenched structure
of the crystallized sample at T = 0.624. Type A particles
are green (dark gray) and type B particles are white (light
gray). A crystal has formed with NA/NB ' 2, see Fig. 2.
The excess B particles and some A particles form a liquid in
the remained of the box. It was not possible to crystallize the
whole sample within 4.5 µs.

FIG. 2: Part of crystal seen from different perspectives. The
outline of a trigonal, hexagonal unit cell is sketched. Type A
particles are colored in green (dark gray) and type B particles
in white (light gray). The crystal structure is MgZn2 (C14)
with P63/mmc symmetry. There are 6 type A particles on
the h position, 2 on the a position and 4 type B particles on
the f position (where h, a and f are Wyckoff letters) [16].

defects has formed. It fills half the box, while the rest
of the box is occupied by liquid. The crystal consists of
more type A than type B particles so that NA/NB ' 2,
whereas the liquid mainly consists of type B particles.

Fig. 2 shows a part of the crystal seen from different
perspectives. A unit cell is sketched. The crystal struc-
ture is identified as the hexagonal MgZn2 Laves struc-
ture. This is a close packing structure for the A2B com-
position with σB/σA =

√
3/
√

2 ' 1.22 [17]. This is in
good agreement with the parameters used.

Fig. 3 shows simulations of a perfect crystal in an or-
thorhombic cell with 864 type A and 432 type B parti-
cles. The density was ρ = 0.82. The crystal was heated
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FIG. 3: The lower line shows the potential energy per particle
during heating of a perfect crystal. The heating rates were
2.2×104 K/µs and 2.2×102 K/µs in Argon units. At T = 1.3
and T = 1.5 respectively the crystal melted. The systems
were then cooled at the same rates. The liquids undergoes a
glass transition at Tg ' 0.6 (depending on cooling rate). The
dashed line is a linear fit to the glass data with a slope of
1.44. A partially melted crystal (approximately 90% crystal)
was instantaneously cooled and kept at constant temperature
T ′ for 30 ns. The ×’s mark the final energy at different T ′

temperatures. From this data, the melting temperature was
estimated to be Tm = 0.93 ± 0.02. The dash-dot line have a
slope of 3/2 corresponding to a classical harmonic crystal.

at constant density from zero temperature with a rate
of dT

dt = 4 × 10−4 and dT
dt = 4 × 10−6. At T = 1.3

and T = 1.5 respectively the crystal melted. We expect
the crystal to be over-heated at these temperatures. The
melting temperature Tm was estimated by simulating a
partially melted sample (approximately 90% of the vol-
ume were crystal) at constant temperature T ′ for 30 ns.
The sample melted when T ′ > Tm = 0.93 ± 0.02 and
partially recrystallized when T ′ < Tm.

The liquid made from the melted crystal was cooled
with a rate of dT

dt = −4 × 10−4 and dT
dt = −4 × 10−6.

At Tm the sample did not crystallize, but became super-
cooled. At Tg ' 0.6 the sample passed though a glass
transition (slightly dependent on cooling rate).

In order to investigate the crystallization properties at
the A2B composition further, we performed simulations
of the super-cooled liquid at constant temperature with

FIG. 4: Potential energy per particle during simulations of
metastable liquids at T = {0.625, 0.583}, ρ = 0.82, NA =
1024 and NB = 512. Four independent samples are shown
at each temperature. Six of the eight samples crystallizes.
At T = 0.625 the limiting factor is the formation rate of
crystallites, while growth rate is the limiting factor at T =
0.583.

N = 1536 and ρ = 0.82. Fig. 4 shows the potential
energy per particle as a function of time at T = 0.624
and T = 0.582. We used several independent samples.
At the high temperature two out of four sample show a
dramatic drop in energy. Here, the limiting factor for
crystallization is the formation of a critical crystallite.
When a critical crystallite have formed, the rest of the
sample crystallizes fast. At the low temperature all four
samples have formed a critical crystallite at t ' 0 but the
growth rate is slow. From simulations at several temper-
atures the maximum crystallization rate was estimated
to T = 0.60± 0.02 (data not shown).

In summary, we show for the first time that the Wahn-
ström binary Lennard-Jones liquid undergoes crystalliza-
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tion when the metastable liquid is simulated for a time of
104τa close to the glass transition. The crystal structure
is identified as MgZn2. This crystal is rather complex,
but can form even when the composition is NA = NB .
The melting temperature of the crystal (at the A2B com-
position and ρ = 0.82) is Tm = 0.93 ± 0.02. The maxi-
mum crystallization rate of the sample is T = 0.60±0.02.
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Strong Pressure-Energy Correlations in van der Waals Liquids
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Strong correlations between equilibrium fluctuations of the configurational parts of pressure and energy
are found in computer simulations of the Lennard-Jones liquid and other simple liquids, but not for
hydrogen-bonding liquids such as methanol and water. The correlations that are present also in the crystal
and glass phases reflect an effective inverse power-law repulsive potential dominating fluctuations, even at
zero and slightly negative pressure. In experimental data for supercritical argon, the correlations are found
to be approximately 96%. Consequences for viscous liquid dynamics are discussed.

DOI: 10.1103/PhysRevLett.100.015701 PACS numbers: 64.70.P�

For any macroscopic system thermal fluctuations are
small and apparently insignificant. Their significance,
however, was pointed out by Einstein, who showed that
for any system in equilibrium with its surroundings, the
specific heat is determined by the magnitude of the energy
fluctuations. This result may be generalized, and it has long
been well understood that linear-response quantities are
determined by equilibrium fluctuations of suitable quanti-
ties [1–3]. One expects few new insights to come from
studies of fluctuations in equilibrated systems. We here
report strong correlations between instantaneous pressure
and energy equilibrium fluctuations in one of the most
studied models in the history of computer simulation, the
Lennard-Jones liquid, as well as for other van der Waals
liquids. These findings have significant consequences, in
particular, for the dynamics of highly viscous liquids.

Using molecular dynamics [4,5], fluctuations were
studied for N � 864 particles interacting via the Lennard-
Jones (LJ) pair potential [6] �LJ�r� � 4����=r�12 �
��=r�6� in the NVT ensemble [7], where r is the distance
between two particles. The configurational contribution to
the instantaneous pressure defines the instantaneous virial
W�t� by [4] p�t�V � NkBT�t� �W�t�. Figure 1(a) shows
normalized instantaneous equilibrium fluctuations of W�t�
and the potential energy U�t� for a simulation at zero
average pressure. The two quantities correlate strongly.
To study the correlations systematically, temperature was
varied at five different densities. The results are summa-
rized in Fig. 1(b), plotting instantaneous virial versus
instantaneous potential energy, with each color represent-
ing equilibrium fluctuations at one particular temperature
and density. The figure reveals strong W;U correlations
with correlation coefficients mostly above 0:9; see Table I.
The results at a given density form approximate straight
lines. The data include slightly negative pressure condi-
tions, as well as three instances of the crystallized liquid
(lower left corner).

For any system with pairwise interactions W�t� �
�
P
i<jrij�t��

0�rij�t��=3 [2,4]. Perfect W;U correlation ap-
plies if ��r� � ar�n ��0 in which case �W�t� �
�n=3��U�t�, where �W�t� � W�t� � hWi, etc. An obvious

first guess is therefore that the strong correlation directly
reflects the r�12 term in the LJ potential. That is not correct
because the exponent n � 12 implies a slope of � � 4 of
the lines in Fig. 1(b); the observed slope is � � 6 (	10%,
see Table I), corresponding to effective inverse power-law
exponents n 
 18. The repulsive core of the LJ potential
(r < 21=6�), however, can be well approximated by
�pow�r� � ar�n ��0, with an exponent n considerably
larger than 12 [8,9]. If one requires that the 0th, 1st, and
2nd derivatives of the two potentials agree at r � r0, one
finds n�r0� � 6� 12=�2� �r0=��

6�. Thus, n��� � 18,
whereas n�0:969�� � 16:2 (this is where �LJ � �).

To directly test whether the fluctuations are well de-
scribed by an inverse power-law potential, we proceeded
as follows. A large number of configurations from the
simulation of the zero-pressure state point in Fig. 1(a) were
stored. This time series of configurations was analyzed by
splitting the potential energy into two terms: U�t��
Upow�t��Urest�t�, where Upow�t��

P
i<j�pow�rij�t��, i.e.,

the potential energy if the interatomic potential were an
inverse power law. Comparing Upow�t� and U�t� it was
found that the fluctuations were nearly identical,
�Upow�t� 
 �U�t�, with a correlation coefficient of 0.94.
Applying the same procedure to the virial, we found
�Wpow�t� 
 �W�t� with a correlation coefficient of 0.99.
These results prove that the repulsive core of the LJ poten-
tial dominates fluctuations, even at zero and slightly nega-
tive pressure, and that at a given state point it is well
described by an inverse power-law potential. The fact
that the repulsive forces dominate the physics—here the
fluctuations—confirms the philosophy of the well-known
Weeks, Chandler, Andersen approximation [10].

It should be stressed that our approach is not to choose a
particular inverse power law and analyze the results in
terms of it. In fact, for an exact inverse power-law potential
all data points in Fig. 1(b) would fall on the same line
[W�t� � n

3U�t�]. Instead, we simply study the equilibrium
fluctuations at each state- point and find strong W;U
correlations, which in turn can be explained by an effective
inverse power law dominating the fluctuations. The effec-
tive inverse power law exponent is weakly state-point
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dependent, and the above explanation is consistent with the
qualitative trends seen in Table I: Increasing temperature
along an isochore or increasing density along an isotherm
results in stronger correlation and smaller slopes, corre-
sponding to a numerically smaller apparent exponent. This
reflects particles approaching closer to each other, and thus
r0 decreasing [n�r0� decreasing] and the inverse power law
being an even better approximation to the LJ potential
close to r0. We do find that �! 4 (n! 12) at high
temperatures and/or densities as expected, but only under
quite extreme conditions; see Table I. Along an isobar there

is competition between the effects of density and tempera-
ture. Our results show that the density effect dominates: the
correlation increases with decreasing temperature. This,
incidentally, is the limit of interest when studying highly
viscous liquids (see below).

In order to investigate how general theW;U correlations
are, several other systems were studied. If W�t� and U�t�
are perfectly correlated (R � 1), the following identity
applies: h�W�Ui2 � h��W�2ih��U�2i. Figure 2 summa-
rizes our simulations in a plot where the diagonal corre-
sponds to perfect correlation and the y variable by the
fluctuation-dissipation theorem equals T times the config-
urational pressure coefficient [�T=V��@W=@T�V]. Liquids
with strong W;U correlations (R> 0:9) include: (1) A
liquid with exponential short-range repulsion; (2) the
Kob-Andersen binary Lennard-Jones liquid [11]; (3) a
liquid consisting of asymmetric ‘‘dumbbell’’ type mole-
cules (two unlike Lennard-Jones spheres connected by a
rigid bond [12]); (4) a seven-site united-atom model of
toluene [13]. The last three liquids are examples of good
glass formers that can be cooled to high viscosity without
crystallizing. Liquids not showing strongW;U correlations
are methanol [14] and SPC/E water [15]; in these models
the instantaneous potential energy has contributions from
both LJ interactions (ULJ�t�) and Coulomb interactions
(UC�t�). Since the Coulomb interaction is an inverse power
law with n � 1, the corresponding contribution to the
instantaneous virial is given by WC�t� � UC�t�=3, i.e.,
perfect correlation. For the LJ interaction of SPC/E water
we find �WLJ�t� 
 6�ULJ�t� with correlations coefficients
above 0.9. Since the proportionality constants are different,
however, the sums of the contributions do not correlate
very well. In fact, close to the density maximum of water
we find that W�t� and U�t� are uncorrelated. For methanol
�W�t� and �U�t� correlate well at such high temperatures
that the LJ interactions completely dominate (
3000 K).

Do strong pressure-energy correlations have consequen-
ces accessible by experiment? In the following we demon-
strate how it is possible to test for strong W;U correlations
in systems where the kinetic contribution to the isochoric
heat capacity is known, exemplified by experimental data
for supercritical argon. From the definition of R, utilizing

TABLE I. The correlation coefficient, R, and the slope � ��������������������������������������
h��W�2i=h��U�2i

p
along an isochore, an isotherm, and an isobar

for the Lennard-Jones liquid.

� � 34:6 mol=l 60 K 80 K 100 K 1000 K
R 0.900 0.939 0.953 0.997
� 6.53 6.27 6.08 4.61

T � 130 K 32:6 mol=l 36:0 mol=l 39:8 mol=l
R 0.945 0.974 0.987
� 6.06 5.71 5.40

p � 0:0 GPa 60K 70K 80K 90K
R 0.965 0.954 0.939 0.905
� 6.08 6.17 6.27 6.52

FIG. 1 (color). Results from equilibrium molecular dynamics
simulations of 864 particles interacting via the Lennard-Jones
potential studied in the NVT ensemble where ‘‘argon units’’
were used (� � 0:34 nm, � � 0:997 kJ=mol). (a) Normalized
fluctuations at T � 80 K and zero average pressure (density �
34:6 mol=l) of the virial, W, �W�t�=

������������������
h��W�2i

p
, and of the

potential energy, �U�t�=
�����������������
h��U�2i

p
. The equilibrium fluctua-

tions of virial and potential energy are strongly correlated, as
quantified by the correlation coefficient: R � h�W�Ui=����������������������������������
h��W�2ih��U�2i

p
� 0:94, where averages are over the full

length of the simulation (10 ns) after 10 ns of equilibration.
(b) Configurational parts of pressure and energy—virial versus
potential energy—for several state points of the Lennard-Jones
liquid. Each color represents simulations at one particular state
point where each data point marks instantaneous values of virial
and potential energy from a 10ns simulation. The black dashed
lines mark constant density paths with the highest density to the
upper left (densities: 39.8, 37.4, 36.0, 34.6, 32:6 mol=l). State
points on the blue dashed line have zero average total pressure.
The plot includes three crystallized samples (lower left corner).
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three fluctuation formulas [4] it is straightforward to show
[16] (where cconf

V and �conf
V are the configurational parts of

the isochoric heat capacity per volume and pressure coef-
ficient, respectively, and KT is the isothermal bulk modu-
lus) that

 T��conf
V �2=cconf

V � R2�p� KT � hXi=V�: (1)

Here X �
P
i<jrw

0�rij�=9 is the so-called ‘‘hypervirial’’
where w�r� � r�0�r�. This quantity cannot be determined
experimentally [4], so we apply an approximation. For an
exact power-law potential, one has X � �n=3�W, which,
however, is not expected to be a good approximation since
the apparent power law depends on the state point. In the
vicinity of a given reference state point, however, one
expects �X� Xref� 
 �n=3��W �Wref� along an isochore

(confirmed by our simulations). Using this approximation
and assuming that R is roughly constant, we can test for
strong W;U correlations. Figure 3 shows experimental
data for supercritical argon covering the temperature range
200–660 K at three different densities [17], showing that
W and U correlate 96% in this case. The apparent power-
law exponents, n � 3�conf

V =cconf
V [16] varies from 13.2 to

15.8, decreasing with increasing temperature and density.
The inset shows that the argon data do not follow the
prediction following from an exact inverse power-law
potential [16,18] [Eq. (1) with R � 1 and X � �n=3�W];
thus the W;U correlations show that such an effective
power-law description applies to a good approximation
only for the fluctuations. This is analogous to the situation
for the Lennard-Jones liquid: The equation of state is
poorly described by that following from an inverse
power-law potential (see, e.g., [19]), although the fluctua-
tions are well described by this.

A different class of systems where it is possible to test
for strong W;U correlations experimentally is highly vis-
cous liquids [12,20]. These are characterized by a clear
separation of time scales between the fast vibrational de-
grees of freedom on the picosecond time scale and the
much slower configurational degrees of freedom on the
second or hour time scale, depending on temperature [21–
27]. Suppose a highly viscous liquid has perfectly corre-
lated W;U fluctuations. When W and U are time averaged
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FIG. 2 (color online). h�W�Ui=�kBTV� plotted as a function
of �h��W�2ih��U�2i�1=2=�kBTV� for several liquids. If the corre-
lation is perfect (R � 1) the data fall on the diagonal. The region
above the diagonal corresponds to R> 1 and is thus forbidden.
LJ: Lennard-Jones results from the simulations reported in
Fig. 1. Similar results were found in the NVE ensemble, for
larger samples, and using Langevin dynamics (results not
shown). Exp: 500 particles interacting via a pair potential with
exponential repulsion; U�r� � �

8 �6e
�14�r=��1� � 14��=r�6�, si-

mulated with Metropolis dynamics. Kob-Andersen binary LJ:
The Kob-Andersen binary Lennard-Jones liquid, N � 1000 [11].
This includes data for the less-viscous liquid, the highly viscous
liquid, as well as the glass. Asymmetric dumbbell: 512 asym-
metric ‘‘dumbbell’’ molecules [12]. OPLS-UA Toluene: A 7-site
united-atom model of toluene, N � 1000 [13]. GROMOS
Methanol: 512 methanol molecules [14]. SPC/E water:
4142 SPC/E water molecules [15]. Except for the two systems
with Coulomb interactions (Methanol and water), all systems
studied have strong correlations between fluctuations in virial
and potential energy; correlation coefficients are above 0.9 for all
state points shown, except those with negative pressure, where
they are slightly smaller. The correlation coefficients increase
with increasing density and temperature.
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FIG. 3 (color online). Data for supercritical argon at 3 different
densities covering the temperature range 200–660K [17] show-
ing a W;U correlation of 96% [KT � �V�@p=@V�T , pconf �
p� NkBT=V � W=V, �conf

V � �@p=@T�V � NkB=V, and
cconf
V � CV=V � �3=2�NkB=V]. The full line corresponds to per-

fect correlation between virial and potential energy [16]. The
inset shows the prediction for an exact inverse power-law inter-
atomic potential (full line): B�T� � A�T�. The poor fit shows that
the fact that fluctuations are well described by an effective
inverse power law does not imply that this is the case also for
the equation of state.
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over, say, one tenth of the liquid relaxation time [12], they
still correlate 100%. Since the kinetic contribution to pres-
sure is fast, the time-averaged pressure equals the time
average of W=V plus a constant. Similarly, the time-
averaged energy equals the time-averaged potential energy
plus a constant. Thus the fluctuations of the time-averaged
W and U are the slowly fluctuating parts of pressure and
energy, so these slow parts will also correlate 100% in their
fluctuations. This is the single ‘‘order’’ parameter scenario
of Ref. [20]. In this case, knowledge of just one of the eight
fundamental frequency-dependent thermoviscoelastic re-
sponse functions implies knowledge of them all [20] (ex-
cept for additive constants [28]). This constitutes a
considerably simplification of the physics of glass-forming
liquids. Unfortunately, there are few reliable data for the
frequency-dependent thermoviscoelastic response func-
tions [29]. Based on the results presented above we predict
the existence of a class of ‘‘strongly correlating viscous
liquids’’ where just one frequency-dependent thermovis-
coelastic response function basically determines all. Our
simulations suggest that the class of strongly correlating
liquids includes van der Waals liquids, but not network
liquids like water or silica. This is consistent with the
findings of De Michele et al. [30].

Very recently Coslovich and Roland studied diffusion
constants D in highly viscous binary Lennard-Jones mix-
tures at varying pressure and temperature [31]. Their data
follow the ‘‘density scaling’’ expression D � F���=T�
[32], and they showed convincingly that the exponent �
reflects the effective inverse power law of the repulsive
core. In view of these findings, we conjecture that strongly
correlating viscous liquids obey density scaling, and vice
versa. If this conjecture is confirmed, by virtue of their
simplicity the class of strongly correlating liquids provides
an obvious starting point for future theoretical works on the
highly viscous liquid state.

The authors wish to thank Søren Toxværd for useful
discussions. This work was supported by the Danish
National Research Foundation’s (DNRF) center for vis-
cous liquid dynamics ‘‘Glass and Time.’’
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Feasibility of a single-parameter description of equilibrium viscous liquid dynamics
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Molecular dynamics results for the dynamic Prigogine-Defay ratio are presented for two glass-forming
liquids, thus evaluating the experimentally relevant quantity for testing whether metastable-equilibrium liquid
dynamics is described by a single parameter to a good approximation. For the Kob-Andersen binary Lennard-
Jones mixture as well as for an asymmetric dumbbell model liquid, a single-parameter description works quite
well. This is confirmed by time-domain results where it is found that energy and pressure fluctuations are
strongly correlated on the � time scale in the constant-volume, constant-temperature ensemble; similarly,
energy and volume fluctuations correlate strongly in the constant-pressure, constant-temperature ensemble.

DOI: 10.1103/PhysRevE.77.011201 PACS number�s�: 61.20.Lc, 64.70.P�, 64.70.Q�

The physics of viscous liquids approaching the glass tran-
sition continue to attract attention �1�. Basic problems like
the origins of nonexponential relaxations and non-Arrhenius
viscosities are still actively debated. A question that is not
currently actively debated is whether a single “order” param-
eter is enough to describe glass-forming liquids and the glass
transition �2�. For more than 30 years the consensus has been
that with few exceptions more than one parameter is re-
quired, a conclusion that appears scarcely surprising given
the complexity of glass-forming liquids �3–9�. In glass sci-
ence “order” parameters traditionally refer to numbers char-
acterizing the structure of the glassy phase, but we empha-
size from the outset that this paper deals with the metastable
equilibrium viscous liquid phase above the glass transition.

The prevailing paradigm of glass science regarding “or-
der” parameters may be summarized as follows �1–9�. If �cp
is the drop in isobaric specific heat per volume going from
liquid to glass, ��T and ��p are the same changes in isother-
mal compressibility and isobaric thermal expansion coeffi-
cient, respectively, and Tg is the glass transition temperature,
the Prigogine-Defay ratio � is defined by

� =
�cp��T

Tg���p�2 . �1�

Davies and Jones in 1952 proved that if there is just one
“order” parameter, then �=1 �4�. In their formulation, if a
liquid is described by a single parameter, its linear relax-
ations are all simple exponentials �4�. The vast majority of
reported Prigogine-Defay ratios obey ��1 �10�. Following
Davies and Jones this is consistent with the observation that
linear relaxations are virtually never exponential. The case
for requiring more than one parameter got further support
from the classical crossover experiment of Kovacs �11� as
well as from several other experiments, all showing that
glass structure cannot be completely characterized by a
single number �12,13�.

Part of this conventional wisdom may be challenged,
though. First, note that � is not strictly well defined. This is
because to evaluate �cp, etc., one must extrapolate measure-
ments in the glass phase into the liquid region, but the glass
phase is not unique, it relaxes with time, and moreover ex-
trapolations are not mathematically uniquely defined. Sec-

ond, as shown by Goldstein �5� and Moynihan and Lesikar
�14�, but perhaps not generally appreciated, it is possible to
have liquids with �=1 described by a single parameter with
nonexponential dynamics.

Although it has been conclusively demonstrated that not
all aspects of glass structure can be described by a single
number �1–9�, this does not rule out the possibility that a
single parameter is sufficient for describing a more limited
range of phenomena—e.g., the linear thermoviscoelastic
properties of a glass-forming liquid �15–17�. It is this possi-
bility we inquire into below, where all simulations were per-
formed in metastable equilibrium with no reference to the
glassy phase.

Experiments carried out the last few years by Richert and
Weinstein �18�, Ngai et al. �19�, and our group �20� indicate
that a single-parameter description in fact may be appropriate
for some situations. The motivation of the present work is a
paper from 2004 by Mossa and Sciortino who simulated ag-
ing of a molecular model of ortho-terphenyl �21�. For small
temperature steps they found that the location of the aging
system in configuration space can be traced back to equilib-
rium states, implying that �21� “a thermodynamic description
based on one additional parameter can be provided” for cases
of nonlinear relaxations fairly close to equilibrium. This sug-
gests studying the �metastable� equilibrium viscous liquid
itself in order to investigate whether—and how—“one-
parameter-ness” may be reflected in the equilibrium fluctua-
tions.

A single-parameter description of the metastable-
equilibrium liquid dynamics by definition applies in the fol-
lowing situation �17�. Suppose a linear-response experiment
is performed where “input” infinitesimal temperature and
pressure variations �T�t� and �p�t� are imposed on the liquid
and “output” infinitesimal entropy and volume variations
�S�t� and �V�t� are observed. Since highly viscous liquids
exhibit time-scale separation between the fast �vibrational�
degrees of freedom and the much slower �relaxational� de-
grees of freedom, in general one expects that each of the
outputs may be written as instantaneous couplings to the
inputs plus a relaxing contribution—the latter being a stan-
dard linear convolution integral involving the previous tem-
perature and pressure histories. By definition, if the two re-
laxing contributions are proportional, the liquid is described
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by a single parameter �17�. In other words, a single-
parameter description applies whenever a variable �� exists
such that

�S�t� = 	1���t� + J11

 �T�t� − J12


 �p�t� ,

�V�t� = 	2���t� + J21

 �T�t� − J22


 �p�t� . �2�

In Ref. �17� it was proved that for any stochastic dynamics a
single-parameter description applies if and only if the fol-
lowing “dynamic Prigogine-Defay ratio”, that is always
larger than one, is unity at all frequencies:

�Tp��� =
cp�����T����
T��p�����2 . �3�

Here the double primes denote the imaginary part of the
response function. Furthermore, it was proved that if the dy-
namic Prigogine-Defay ratio is unity at one frequency, it is
unity at all frequencies. Unfortunately, the relevant
frequency-dependent thermoviscoelastic response functions
are difficult to measure—in fact, no reliable measurements
appear yet to exist. This single-frequency criterion should be
useful for the interpretation of experiment, since it is likely
that the first measurements will cover only a limited fre-
quency range. In real experiments one can, of course, never
prove that a number is unity, but it seems reasonable to as-
sume that the closer the dynamic Prigogine-Defay ratio is to

unity, the more accurate a single-parameter description is.
There is no simple physical interpretation of the param-

eter �� except that it controls both entropy and volume re-
laxations. There is no reason to believe that �� gives a com-
plete characterization of the molecular structure in the way
“order” parameters of traditional glass science are supposed
to do. Despite this severe limitation it is not obvious that
glass-forming liquids exist that to a good approximation are
described by a single parameter. Recent results studying ther-
mal fluctuations of less-viscous liquids give rise to optimism,
though: For a number of model liquids �22�—including the
standard Lennard-Jones system—the potential energy and
the virial correlate better than 90% in their thermal equilib-
rium fluctuations. Recall that the virial when divided by vol-
ume is the contribution to pressure from the molecular
interactions—i.e., in addition to the ever-present ideal-gas
contribution deriving from the kinetic degrees of freedom,
NkBT /V. This strong virial-energy correlation is not surpris-
ing at high pressure where the repulsive part of the potential
dominates. The correlation, however, applies even at densi-
ties where the pressure is slightly negative �22� which is less
obvious a priori, the reason being that the fluctuations are
dominated by particle-particle close encounters, even at zero
and negative pressure.

The observed strong virial potential energy correlations
do not depend significantly on viscosity. For highly viscous
liquids, because of the time-scale separation, one expects
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FIG. 1. �Color online� �a� shows the imaginary parts �scaled to maximum value� of −cv���, −v���, and 1 /�T��� for the Kob-Andersen
binary Lennard-Jones �BLJ� 80-20 mixture �27�; �c� shows the same for a system of asymmetric dumbbells �28�. The dashed lines indicate
Debye relaxation with relaxation times ��=2000 �aa

�m /�aa and ��=1600 ps, respectively. �b� and �d� show the corresponding dynamic
Prigogine-Defay ratios, Eq. �2�. For both systems the total simulation time covers more than 104��.
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that the slow �relaxing� contributions to pressure are given
by the virial and that the slow contributions to energy come
from the potential energy. Thus these variables should be
highly correlated in their slow equilibrium fluctuations for
systems similar to those studied in Ref. �22�. This suggests
that to a good approximation a single, relaxing parameter
controls both quantities, in which case it is obvious to expect
that Eq. �2� may apply as well.

To test this the dynamic Prigogine-Defay ratio was evalu-
ated for two viscous liquid model systems by computer
simulation. The test requires that three frequency-dependent
thermoviscoelastic response functions must be evaluated. For
simulations carried out at constant temperature and volume
�the NVT ensemble� the relevant response functions are the
isochoric specific heat per unit volume cv, the isothermal
compressibility �T, and the isochoric pressure coefficient
v���p /�T�V. These quantities enter the NVT dynamic
Prigogine-Defay ratio �17� via

�TV��� = −
cv�����1/�T�����

T�v�����2 . �4�

The fluctuation-dissipation �FD� theorem �23–26� implies
that the above linear-response functions may be determined
from the equilibrium fluctuations of energy �E� and pressure
�p� as follows. If �E�t��E�t�− �E�V,T, �p�t�� p�t�− �p�V,T

and C�	f�t�
 denotes the cosine transform of f�t� at frequency
�, according to the FD theorem

�TV��� =
C�	��E�0��E�t��V,T
C�	��p�0��p�t��V,T


�C�	��E�0��p�t��V,T
�2 . �5�

If energy and pressure fluctuations correlate perfectly, one
has �E�t���p�t� and consequently �TV���=1 at all frequen-
cies. Equation �5� suggests that the dynamic Prigogine-Defay
ratio tests how well the two relevant quantities �here energy
and pressure� correlate on the time scale defined by the fre-
quency, as sort of a time-scale-dependent inverse correlation
coefficient squared.

Figure 1�a� shows the frequency dependence of the imagi-
nary parts of the three linear-response functions for the stan-
dard Kob-Andersen binary Lennard-Jones 80-20 mixture
�27�. The three response functions are very similar, and all
exhibit the characteristic asymmetry toward higher frequen-
cies observed for real glass-forming liquids. Figure 1�b�
shows the dynamic Prigogine-Defay ratio; as mentioned, this
number is unity if and only if the three imaginary parts are
strictly proportional �17�. This is not the case, but the ratio is
fairly close to unity in the frequency range of the main ���
process. Thus in the range of frequencies one decade above
and below the loss-peak frequency—the “�-relaxation
range”—the ratio stays below 1.2. In accordance with the
above interpretation of �TV��� this indicates that on time
scales in the �-relaxation range energy and pressure have a
correlation coefficient that is larger than 0.9.

We also simulated a highly viscous single-component mo-
lecular liquid. This is a system of “asymmetric dumbbell”
molecules defined as two Lennard-Jones spheres of different
radii held together by a rigid bond �28�. As shown in Figs.
1�c� and 1�d� the imaginary parts of the response functions

are similar and the dynamic Prigogine-Defay ratio stays be-
low 1.06 in the �-relaxation region.

The results in Fig. 1 show that a class of viscous liquids
exists where the dynamic Prigogine-Defay ratio is close to
unity. This is consistent with earlier computer simulations of
the �poorly defined� standard Prigogine-Defay ratio � �Eq.
�1�� for a few systems, showing that this quantity is often
close to unity �29,30�. In Figs. 2�a� and 2�b� we plot energy
and pressure equilibrium fluctuations as functions of time for
both systems. In order to focus on fluctuations in the �-time
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FIG. 2. �Color online� �a� and �b� Fluctuations of energy and
pressure in the NVT ensemble for the Kob-Andersen binary
Lennard-Jones mixture �27� and the asymmetric dumbbell system
�28�. Each point represents an average over a time interval of 0.1��

where �� is defined as the inverse loss-peak frequency �Figs. 1�a�
and 1�c��. Energy and pressure fluctuations are highly correlated,
showing that a single-order-parameter description is a good ap-
proximation. �c� and �d� Fluctuations of energy and volume in the
NpT ensemble at the same state points as �a� and �b�, respectively.
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range, both pressure and energy were averaged over one-
tenth of �� �defined as the inverse loss-peak frequency�, cor-
responding to focusing on the inherent dynamics �31� appro-
priate for understanding the viscous behavior. As expected,
the correlations are strong. Both systems were also simulated
at constant temperature and pressure. Here energy and vol-
ume show similarly strong correlations �Figs. 2�c� and 2�d��.
Thus the appropriateness of a single-parameter description is
not ensemble dependent.

To summarize, it has been shown that it is possible to
investigate the single-parameter question by monitoring ther-
mal equilibrium fluctuations. The dynamic Prigogine-Defay
ratio provides a convenient test quantity for this, a quantity
that is also relevant for experiment because it refers to one
single frequency. Several questions are still unanswered. For

instance, it is not known whether there is any link to fragil-
ity; one traditionally expects strong liquids to be single-
parameter systems and fragile liquids to require a multiple-
parameter description. The findings of Ref. �22�, however,
indicate that network liquids are not well described by a
single parameter in the above sense, whereas purely van der
Waals liquids are. Clearly, more work is needed to clarify
this and other issues, and we hope that the results presented
here serve to encourage the physics and glass communities to
once again address the old question: one or more “order”
parameters?

This work was supported by the Danish National Re-
search Foundation’s Centre for Viscous Liquid Dynamics
“Glass and Time.”
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Abstract
We first summarize the classical arguments that the vast majority of glass-forming liquids
require more than one ‘order’ parameter for their description. Critiques against this
conventional wisdom are then presented, and it is argued that the matter deserves to be
reconsidered in the light of recent experimental developments. Out of the eight basic
thermoviscoelastic frequency-dependent response functions, there are generally three
independent functions. For stochastic dynamics we show that there are only two independent
response functions; for this case it is shown how analytic continuation may be utilized to
express the third response functions in terms of two others. Operational criteria are presented
for the linear thermoviscoelasticity being described by a single ‘order’ parameter, in which case
there is just one independent thermoviscoelastic response function. It is shown that a
description with a single ‘order’ parameter applies to a good approximation whenever thermal
equilibrium fluctuations of fundamental variables like energy and pressure are strongly
correlated. Results from computer simulations showing that this is the case for a number of
simple glass-forming liquids, as well as a few exceptions, are briefly presented. Finally, we
briefly discuss a new conjecture according to which experiments at varying temperature and
pressure follow the density scaling expression for the relaxation time, τ = F(ρx/T ) (ρ and T
are density and temperature), if and only if the liquid is ‘strongly correlating’, i.e., to a good
approximation is described by a single ‘order’ parameter.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The question whether one ‘order’ parameter is sufficient for
describing glass structure attracted considerable interest among
glass scientists in the period 1950–1980. The question was
thoroughly discussed in particular in the 1970s [1–6] leading
to clarifications of a number of theoretical questions. Since
then, based on experimental evidence the consensus has been
that one ‘order’ parameter is rarely enough.

The term ‘order parameter’ was commonly used in
the glass community before the term in the 1960s became
commonly known in the physics community where it took on
a somewhat different meaning. In connection with critical
phenomena and the theory of second order phase transitions,
renormalization, etc, ‘order parameters’ reflect the relevant
Lie group symmetry and determine the relevant part of the

free energy within a Ginzburg–Landau expansion of the free
energy. In order not to confuse the issue it is probably a
good idea to change the wording, so below we refer to ‘order’
parameters or occasionally just parameters.

The present paper summarizes and extends recent works
making the case that the question of how many ‘order’
parameters are sufficient deserves to be reconsidered. In
section 2 we briefly summarize the classical viewpoint, in
section 3 critiques against it are presented, in section 4 the more
restricted well-defined case of linear thermoviscoelasticity
is presented, in section 5 thermoviscoelasticity in complete
generality is discussed, in section 6 we show that in
any stochastic description of the dynamics there are only
two independent response functions, section 7 treats the
single-parameter case where there is just one independent
thermoviscoelastic response function, in section 8 the

0953-8984/08/244113+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

Paper VI 117



J. Phys.: Condens. Matter 20 (2008) 244113 N P Bailey et al

new concept of a ‘dynamic’ Prigogine–Defay ratio, which
tests ‘one-parameter-ness’ by reference to single-frequency
thermoviscoelastic measurements, is presented. Section 9
presents a few computer simulations showing that several
systems indeed are well described by only a single parameter,
section 10 discusses a recent conjecture stating that the single-
parameter liquids are precisely those that obey density scaling
for the results of high-pressure experiments. Finally, section 11
gives a brief summary.

2. The conventional wisdom: one parameter is
seldom enough

The standard ‘order’ parameter theory of glass science was
developed by Davies and Jones in the 1950s [7, 8]. This theory
idealizes the glass transition and treats it as a genuine phase
transition. In the liquid the ‘order’ parameters are functions
of pressure and temperature, whereas they are frozen in the
glass phase. If �cp is the difference between liquid and glass
isobaric specific heat per unit volume at the glass transition
temperature Tg, �κT the liquid–glass difference of isothermal
compressibilities, and �αp the liquid–glass difference of
isobaric thermal expansion coefficients, the Prigogine–Defay
ratio � is defined [7–9] by

� = �cp�κT

Tg
(
�αp

)2
. (1)

Within the Davies–Jones framework one can prove [7, 8]
that � � 1, an inequality that has been confirmed in many
experiments on quite diverse glass-forming liquids [10–13].
If there is just a single ‘order’ parameter, one has � = 1.
Although there are glass-forming polymers where � = 1
within experimental uncertainty [14, 15], the vast majority, if
not all, glass-forming liquids have� > 1 (typically: 2 < � <

5) [2]. If simple first order dynamics are adopted, the case
of a single parameter implies an exponential decay towards
equilibrium after external disturbances [1–8]. This is rarely
observed, a fact that traditionally was seen as a confirmation
of the conventional wisdom that more than one parameter is
required.

A further classical argument for one parameter not being
enough is the well-known fact that glass properties are not
uniquely defined by, e.g., the density, as one would expect
if there is just one parameter [3, 11]. For instance, one can
prepare glasses with same index of refraction, but different
electrical conductivity. This point was beautifully illustrated
in Kovacs’ classical crossover experiments [11, 16].

In summary: the observed Prigogine–Defay ratios are
almost always significantly larger than unity, relaxations are
almost always non-exponential, and glass properties are not
just a function of density. This altogether makes a convincing
case for there generally being a need for more than one
parameter, a conclusion that also appears natural given the
complexities of glass-forming liquids and glass structure.
Based on this, with few exceptions (e.g., [17–20]), the matter
has not been actively discussed for long time.

3. Questioning the conventional wisdom

The first point to be noted is that the question of one or more
‘order’ parameters is not really well defined in the classical
approach, because the glass transition is not a phase transition.
The fact that the glass transition is a dynamic phenomenon—
a gradual falling out of equilibrium that inevitably takes
place whenever inherent relaxation times become longer than
experimental times—is well known and well understood. This
weakens the classical theory where one regards the glass
transition as a freezing-in process taking place at a particular
temperature [21].

A related conceptual problem is that the� of equation (1)
is not strictly well defined. The changes in specific heat,
etc, from liquid to glass are not well defined because of two
facts: (1) these changes are found by extrapolating the liquid
and glass properties, respectively, to the transition region.
The glass transition temperature, however, is not strictly well
defined because the glass transition is not a phase transition.
(2) The glass phase is not well defined—and it relaxes
continuously—in principle making any measured property in
the glass phase a function of time. Many researchers would
argue that, while this is correct in principle, these effects are
minor and not sufficiently important to reduce the observed
Prigogine–Defay ratios to unity. We take a more purist
viewpoint, however, and believe that concepts that are not well
defined should be avoided in a scientific description.

Recent experiments monitoring ageing of a glass at
temperatures around Tg indicate that in some cases the
deviations from equilibrium may be quantified in terms of
a single parameter. One example is a study where the
characteristics of the dielectric Johari–Goldstein beta loss
peak were used to monitor structural relaxations taking
place on the alpha timescale [22, 23]. To keep things
simple only beta loss-peak frequency and beta maximum loss
were monitored, thus providing two numbers that depend
on structure and temperature. For both sorbitol [22] and
tripropylene glycol [23] it was found that at any given
temperature these two numbers correlate linearly. Thus even
after a complex thermal history, when returning back to
some given temperature, beta loss-peak frequency and loss
maximum always lie on a line characterizing that temperature.
An example of this is provided in figure 1 showing loss-peak
frequency and maximum loss for the Johari–Goldstein beta
process of tripropylene glycol during a temperature cycling
around Tg. If the structure were characterized by more than
one order parameter, there is no reason why such a correlation
should hold. On the other hand, if structure is characterized by
a single parameter, at any given temperature the two quantities
must correlate, and for fairly small deviations from equilibrium
this correlation would appear approximately linear (in linear as
well as in log–log plots).

Other dielectric experiments also indicate that a single
structural parameter may be sufficient in some cases. Thus
studying the shape of the alpha loss peak as quantified by
the exponent of the best-fit stretched exponential function, it
has been shown for a number of liquids [24] that when both
temperature and pressure are varied, the shape depends only of
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Figure 1. Temperature-jump experiment for tripropylene glycol
monitored via the beta loss-peak frequency and loss-peak
maximum [23]. These two numbers depend on structure, and their
relaxation monitors structural relaxation (known to take place on the
alpha timescale). Starting at 185.0 K temperature was first lowered to
183.0 K and kept there for 84 h. Then temperature was changed to
181.0 K where it was kept for 140 h. Thereafter temperature was
changed back to 183.0 K and kept there for another 140 h. The fact
that the beta loss-peak frequency and loss maximum correlate at any
given temperature, also after jumping to 181.0 K and back go
183.0 K, indicates that the structure controlling the beta relaxation is
described by a single parameter.

the loss-peak frequency. A simple explanation of this would
be that there is just a single structural parameter, because if
that were the case, this parameter would determine both loss-
peak frequency and loss-peak shape and consequently these
two quantities would automatically correlate.

Richert and Weinstein from a study of the nonlinear
dielectric response on glycerol showed that, although the
dielectric and thermal relaxation times vary throughout the
liquid, they are locally closely correlated [25]. Again, if there
is just one parameter determining all properties, one would
expect that this parameter may fluctuate in space, but locally
determine both dielectric and thermal relaxation time.

More evidence comes from computer simulations. In a
model of ortho-terphenyl Mossa and Sciortino [26] studied
ageing for fairly small temperature steps that were, however,
large enough to be well outside the linear regime. The
simulations showed that in configuration space the location of
the ageing system can be traced back to equilibrium states. The
authors summarized their findings by stating that for nonlinear
relaxations close to equilibrium ‘a thermodynamic description
based on one additional parameter can be provided.’

There seems to be a general understanding in the glass
community that there is one ‘order’ parameter if and only if
the Prigogine–Defay ratio is unity, which happens if and only
if relaxations are simple exponentials. This is not correct,
however, and not what one finds from reading the classical
papers carefully. Goldstein in his 1964 review, for instance,
noted that in some situations with several parameters that

are mathematically constrained by several constraints, the
Prigogine–Defay ratio may be unity. In this situation ‘it is
really a matter of taste’ [27] whether one prefers to speak of
many (constrained) parameters or of a single generally non-
exponential ‘order’ parameter. Thus the observation of non-
exponential relaxations does not imply that there must be more
than one parameter.

In 2006 Schmelzer and Gutzow revisited the Prigogine–
Defay ratio and the question of the number of ‘order’
parameters [20]. Assuming just a single parameter the
dynamics of which follow the classical framework of the
thermodynamics of irreversible processes, they argued that
the standard Prigogine–Defay ratio (obtained by extrapolating
from glass and liquid to Tg) nevertheless is larger than unity.
This result seriously questions the prevailing understanding of
the glass community reviewed above, and it emphasizes the
need for further work.

The first one should do in reconsidering the ‘order’
parameter question is to make sure that the problem is well
defined. As mentioned, the standard Prigogine–Defay ratio �
of equation (1) is not well defined. As became clear in the
1970s [3, 4, 6], it is possible to define a version of� that is well
defined. This is done by referring exclusively to properties of
the equilibrium viscous liquid phase and its linear responses. In
this phase thermodynamic properties are generally frequency
dependent, and the high-frequency limits correspond to glassy
behaviour where structural relaxations do not take place. If
cp(ω) is the frequency-dependent isobaric specific heat per unit
volume [28], etc, this leads to the following rigorous definition
of the Prigogine–Defay ratio for the metastable equilibrium
viscous liquid at any temperature T :

� = {[cp(ω → 0)− cp(ω → ∞)]
× [κT (ω → 0)− κT (ω → ∞)]}
× {T [αp(ω → 0)− αp(ω → ∞)]2}−1. (2)

4. Linear thermoviscoelasticity

From now on we turn the focus exclusively to the metastable
liquid phase with no reference to the glass phase. This limits
the discussion compared to what is standard in glass science,
but has the advantage of making all concepts rigorously well
defined. Linear thermoviscoelasticity deals with the frequency
dependence of thermodynamic properties and their coupling to
frequency-dependent mechanical properties. It is understood
that, in principle, only infinitesimal perturbations are applied,
thus ensuring linearity. In the simplest (isotropic) theory
there are two fundamental ‘energy bonds,’ a thermal and a
mechanical. An energy bond has an ‘effort’ variable and a
‘displacement’ variable [29–31]. The thermal energy bond is
characterized by entropy S as the displacement variable and
temperature T as the effort, for the mechanical energy bond
the displacement variable is the volume V and the effort is
the negative pressure, −p. The product of the effort and the
differential displacement variable gives the energy transferred
into the system from its surroundings. Thus the two energy
bonds (figure 2) simply express the well-known fundamental
identity dE = T dS − p dV .

3
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Figure 2. The two fundamental energy bonds [31] for a system
described by standard thermodynamics. One energy bond is thermal;
here the ‘effort’ is temperature T and the displacement variable is the
entropy S; thus if Ṡ ≡ dS/dt is the entropy flux into the system, the
rate of energy transferred into the system is T Ṡ. The second energy
bond is mechanical; here the effort is negative pressure −p and the
displacement variable is the volume V ; if V̇ is the volume flux into
the system, the rate of energy transferred into the system is −pV̇ .

For infinitesimal perturbations around equilibrium with
angular frequency ω, if one imagines controlling the effort
variables and measuring displacement changes, and if the usual
complex notation is adopted where, e.g., T (t) = T0 + δT (t)
with δT (t) = Re[δT exp(iωt)], linearity is expressed in the
following relation where δs is entropy change per unit volume
and δv is relative volume change:

(
δs(ω)
δv(ω)

)
=

(
cp(ω)/T αp(ω)

αp(ω) κT (ω)

) (
δT (ω)
−δp(ω)

)
. (3)

The response matrix is sometimes termed the thermal
compliance matrix. Its symmetry expresses Onsager
reciprocity, reflecting the fundamental fact that there is time
reversibility on the microscopic level [32, 33].

5. The completely general case: three independent
thermoviscoelastic response functions

How many independent thermoviscoelastic response functions
exist? From the four variables, entropy, temperature, volume
and pressure, one may choose any two as ‘control’ variables.
Usually, one chooses one control variable from each energy
bond. There are thus four natural choices of control (‘input’)
variables, the two remaining are the measured (‘output’)
variables. For each choice there is one response matrix as in
equation (3) [34]. These four matrices are all symmetric by
Onsager reciprocity, leaving 12 frequency-dependent response
functions. These are not independent, however; if one matrix
is known, the three others are easily calculated from it by
isolating the output variables in question on the left-hand sides
of two equations. Thus there are only the three independent
response functions, for instance those of equation (3).

The above statement is true in complete generality. Papers
by Moynihan and others of the 1970s showed, however, that
in the ‘order’ parameter description there are really only two

independent response functions [1, 4, 35] (see also [36]). The
formula for calculating the third response function in terms of
the two others involves analytic continuation (next section).
The situation is analogous to that of the Kramers–Kronig
relation which allows one to calculate the imaginary part of a
response function in terms of its real part, but only if the latter
is known at all frequencies.

6. The general stochastic case: two independent
thermoviscoelastic response functions

In this section we summarize the master equation description
of viscous liquid dynamics [34, 37, 38] and show that it implies
that there are just two independent response functions. More
precisely, it is shown that knowledge of cp(ω) and αp(ω)

at all frequencies allows one to calculate κT (ω) except for
an overall additive constant giving the high-frequency limit.
This is equivalent to the above-mentioned result derived long
ago [1, 3, 36], but now in a setting that is explicitly consistent
with statistical mechanics.

In a master equation there are states and stochastic
transitions between the states. A complete description is
provided by the set of probabilities {Pn} that the system is in
state n. This is an ensemble description making it possible to
calculate all properties, including the entropy. Following [34]
we shall think of each state as an inherent state in the sense
of Stillinger and Weber [39] (i.e., a potential energy minimum
in configuration space), but other state interpretations are also
possible. Each state has the vibrational Gibbs free energy
Gn(T, p). The ensemble Gibbs free energy that includes the
probability dependence is given [34, 38] by

G(T, p, {Pn}) =
∑

n

Pn(Gn(T, p)+ kBT ln Pn). (4)

From this one finds the ensemble volume and entropy by
the usual thermodynamic relations V = ∂G/∂p and S =
−∂G/∂T .

The master equation dynamics are given by first order
equations in time that are mathematically similar to those of
the classical ‘order’ parameter description of glass science:

Ṗn =
∑

m

Wnm Pm . (5)

The main difference to the ‘order’ parameter description is the
constraint

∑
n Pn = 1 and that the present formalism ensures

consistency with statistical mechanics.
The rate matrix W depends on T and p and changes

slightly when these variables are perturbed by small time-
dependent variations. The same applies for the equilibrium
probabilities, Peq

n ∝ exp[−Gn(T, p)/kBT ]. According to the
principle of detailed balance, which ensures consistency with
statistical mechanics as well as time-reversal invariance, the
equilibrium probabilities [32, 33] obey

Wnm(T, p)Peq
m (T, p) = Wmn(T, p)Peq

n (T, p). (6)

Here temperature and pressure may be arbitrary functions
of time. For periodic infinitesimal perturbations from
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equilibrium the dynamics are perturbed via the transition
matrix’s dependence on pressure and temperature. The
equilibrium probabilities at p = p0 and T = T0 are denoted
by P0

n and the transition matrix at this state point is denoted by
W 0.

If Q1 is entropy and Q2 volume, solving the resulting
system of equations leads [34] to the following expression
for the compliance matrix of equation (3) (where ∂Qα

∂Pm
and

∂Qβ

∂Pm
are evaluated at (T0, p0), the matrix A(ω) is defined by

A(ω) ≡ (W 0 − iω)−1W 0 P0, α, β = 1, 2):

Jαβ(ω) = J ∞
αβ +

∑

m,n

∂Qα

∂Pn
Anm(ω)

∂Qβ

∂Pm
. (7)

Note that A(ω) → 0 for ω → ∞; thus Jαβ(ω) → J ∞
αβ for

ω → ∞. Introducing the matrix Ynm ≡ (P0
n )

− 1
2 W 0

nm(P
0
m)

1
2 ,

the detailed balance requirement equation (6) implies that Y is
symmetric. In terms of Y , the matrix A(ω) is given [34] by
A(ω) = RY (Y − iω)−1 R where Rnm = (P0

n )
1
2 δnm . Thus for

the relaxing part of the compliance matrix �J ≡ J − J ∞, if
∂Qα is the vector whose n th component is ∂Qα/∂Pn(T0, p0),
one has [34]

�Jαβ(ω) = 〈R∂Qα | Y

Y − iω
|R∂Qβ 〉. (8)

Adopting the standard ‘ergodicity’ assumption that all states
are connected by some path of intermediate states, the
matrix Y has a one-dimensional eigenspace corresponding
to the eigenvalue zero whereas all other eigenvalues are
negative [32, 33]. If the eigenvectors of Y corresponding
to all the negative eigenvalues are denoted by |ψ j 〉 with
corresponding eigenvalue −1/τ j , equation (8) implies

�Jαβ(ω) =
∑

j

〈R∂Qα |ψ j 〉〈ψ j |R∂Qβ〉 −1/τ j

−1/τ j − iω
. (9)

Since (−1/τ j)/(−1/τ j − iω) = 1/(1 + iωτ j ), changing to a
continuous notation equation (9) becomes

�Jαβ(ω) =
∫ ∞

0

gα(τ )gβ(τ )

1 + iωτ
dτ, (10)

where the functions gα(τ ) are real, but not necessarily positive.
By reference to the theory of analytic functions we show

below that not all three functions of the compliance matrix
are independent. This is intuitively obvious already from the
fact that the three compliance functions are determined by the
two functions g1(τ ) and g2(τ ). More precisely the argument
goes as follows. The three compliance functions �Jαβ(ω) are
analytic. Knowledge of such a function at all real, positive
frequencies by analytic continuation uniquely determines the
function in the complex plane. Equation (10) shows that there
is a branch cut along the positive imaginary frequency axis.
Given that�Jαβ(ω) → 0 for ω → ∞, the pole distribution on
the branch cut uniquely determines the compliance function.
More specifically, equation (10) implies that

�J22(ω) =
∫ ∞

0
lim

ω′→i/τ

{
(1 + iω′τ )

�J 2
12(ω

′)
�J11(ω′)

}

× 1

1 + iωτ
dτ. (11)

Thus knowledge of �cp(ω) and �αp(ω) at all real, positive
frequencies implies knowledge of �κT (ω). Similarly,
knowledge of �κT (ω) and �αp(ω) at all real, positive
frequencies implies knowledge of �cp(ω).

7. The single-parameter case: one independent
thermoviscoelastic response function

The compliance matrix Jαβ(ω) reflects both the relaxing
responses (completely characterized by �J (ω)) and the
instantaneous responses given by the high-frequency limits.
Switching to the time domain, if the relaxing responses of the
two energy bonds are always proportional, i.e., controlled by a
common variable δε(t), the entropy and volume responses per
unit volume are given by expressions of the form

δs(t) = γ1δε(t)+ J ∞
11 δT (t)− J ∞

12 δp(t)

δv(t) = γ2δε(t)+ J ∞
21 δT (t)− J ∞

22 δp(t).
(12)

We refer to this situation as that of a single ‘order’
parameter [34] and proceed to show following [34] that in this
case there is basically just one compliance function. Note that
no reference is made to the properties of the glassy state.

For periodically varying fields equation (12) implies

δs(ω) = γ1δε(ω)+ J ∞
11 δT (ω)− J ∞

12 δp(ω)

δv(ω) = γ2δε(ω)+ J ∞
21 δT (ω)− J ∞

22 δp(ω).
(13)

The ε-parameter may be expanded to first order as follows:

δε(ω) = �1(ω)δT (ω)−�2(ω)δp(ω). (14)

Substituting equation (14) into (13) and using the symmetry of
the compliance matrix leads to the identity γ1�2(ω) + J ∞

12 =
γ2�1(ω)+ J ∞

21 . For the imaginary parts this implies

�′′
1(ω)

γ1
= �′′

2(ω)

γ2
. (15)

When two analytical functions both with branch cuts on the
positive imaginary axis of the complex ω-plane have same
imaginary part, they are identical except for an overall additive
constant. The latter is zero, because the fact that the two
functions give the relaxing part of the responses implies that
they both go to zero for ω → ∞. Thus �1(ω) ∝ �2(ω).
By considering the constant pressure and constant temperature
cases it now follows easily from equations (13) and (14) that
�J11(ω) ∝ �J12(ω) ∝ �J22(ω), or:

�cp(ω) ∝ �αp(ω) ∝ �κT (ω). (16)

In conclusion, in the case of a single ‘order’ parameter
(equation (12)) there is basically just one independent
thermoviscoelastic response function, i.e., knowledge of one
of them implies knowledge of the two others except for the
overall additive constants giving their high-frequency limits.
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8. ‘Dynamic’ Prigogine–Defay ratio: a
single-parameter test

In principle, in order to test experimentally whether or
not a single ‘order’ parameter suffices, one measures the
three response functions of the compliance matrix to test
whether the relaxing parts are proportional (equation (16)).
This, however, requires wide-frequency measurements of
the thermoviscoelastic response functions, and there are yet
no measurements of all three thermoviscoelastic response
functions on a glass-forming liquid. (Even the isobaric
frequency-dependent specific heat cp(ω) has not yet been
measured reliably [28]. The problem is that, because frozen-in
stresses relax on the same timescale that the enthalpy relaxes,
establishing truly isobaric conditions is difficult and in most
experimental set-ups the stress tensor is not diagonal.)

Even when methods have been developed for measuring
the compliance matrix of equation (3), one may still expect
that initial measurements cover only a rather limited dynamic
range. This leads to the question: is it still possible to test
the single-parameter conjecture equation (12)? This question
was discussed in a recent publication [34] where it was shown
that, in fact, measurements at one single frequency are enough
to test the single-parameter conjecture. Of course, one can
never prove that a single-parameter description is correct in
an absolute sense—it is all a matter of investigating how
good such a description is. In the above-mentioned recent
paper [34] it was shown that a ‘dynamic’ Prigogine–Defay
ratio �T p(ω) � 1 exists with the property that, if this quantity
is unity at one frequency, it is unity at all frequencies—which
happens if and only if a single-parameter description applies.
The dynamic Prigogine–Defay ratio is given by the imaginary
parts of the three thermoviscoelastic response functions [34] as
follows:

�T p(ω) = c′′
p(ω)κ

′′
T (ω)

T0(α′′
p(ω))

2
. (17)

In order to minimize uncertainties measurements should
preferably be taken at a frequency around the alpha loss-
peak frequency, because only here the imaginary parts are
significantly different from zero. We expect that if �T p(ω) is
close to unity in the main relaxation region (e.g., below 1.1), a
single-parameter description applies to a good approximation.

9. Results from computer simulations

Recently thermal equilibrium fluctuations were studied in
computer simulations of various liquids [40, 41]. In many
cases it was found that in constant temperature and volume
simulations (the so-called NV T ensemble) pressure and
energy fluctuations correlate strongly. More accurately, this
applies for the configurational parts of pressure and energy, the
‘virial’ and the potential energy. (The kinetic parts of pressure
and energy—the ideal gas pressure at the given density and
temperature, and the kinetic energy—trivially correlate 100%,
but with a different proportionality constant.) As an example,
figure 3 shows the thermal fluctuations of virial and potential
energy for a standard Lennard-Jones liquid.
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Figure 3. Thermal equilibrium fluctuations of potential energy and
viral (the configurational part of pressure) for a standard
Lennard-Jones liquid [41]. The fact that these two quantities
correlate strongly shows that, as regards the configurational degrees
of freedom, a single-parameter description is quite good for the
thermoviscoelastic behaviour. For highly viscous liquids the
timescale separation between the slow configurational degrees of
freedom and the remaining implies that these correlations (that we
have also seen, e.g., in simulations of the highly viscous
Kob–Andersen binary Lennard-Jones mixture) implies that the three
thermoviscoelastic response functions are basically identical.

As shown in [34], liquids for which these quantities
correlate strongly in their fluctuations are well described by
a single order parameter. Intuitively this may be understood
by reference to equation (12) considered without perturbations
(δT (t) = δp(t) = 0) which, if assumed to describe also
the fluctuations, shows that entropy and volume fluctuations
are 100% correlated. Thus one expects that the dynamic
Prigogine–Defay ratio is close to unity for such ‘strongly
correlating liquids’. Figure 4 shows that strongly correlating
liquids include the Lennard-Jones liquid as well as a number
of other glass-forming liquids. Water and methanol are
interesting exceptions that do not show strong correlations
between virial and potential energy fluctuations (figure 5); thus
for these two hydrogen-bonding liquids a single-parameter
description does not apply.

10. A conjecture: strongly correlating liquids obey
density scaling and vice versa

The last five years large amounts of data on the behaviour
of glass-forming liquids under pressure have been published.
The motivation is that by not just varying temperature, but
pressure as well, much more information may be learned about
these systems. Generally, the liquid relaxation time τ , which
is basically the Maxwell relaxation time or the inverse alpha
loss-peak frequency, depends strongly on both temperature
and pressure, increasing with lowering temperature or raised
pressure. This is not surprising. A new and significant
finding [42–44], however, is that if ρ is the density, many
liquids obey ‘thermodynamic’ or ‘density’ scaling, i.e., the
function τ (T, p) may be written

τ = F

(
ρx

T

)
. (18)

Both the function F and the exponent x depend on the liquid
in question. This expression has mainly been tested on glass-
forming molecular liquids, the systems that are most easily

6
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Figure 4. Correlation coefficient between virial (volume times the
configurational part of the pressure) and potential energy thermal
equilibrium fluctuations for a number of liquids evaluated by
computer simulations [41]. The liquids represented are: LJ: standard
Lennard-Jones, exp: monatomic liquid with exponential repulsive
forces, dumb-bell: a molecule model of two atoms of unlike size,
BLJ: the Kob–Andersen binary Lennard-Jones liquid, methanol, and
SPC/ E water. The last two are hydrogen bonding and do not show
significant correlations; the other liquids do. It has been argued that
virial and potential energy give the slowly fluctuating parts of the
pressure and energy [41]; thus whenever the former quantities
correlate strongly, to a good approximation the liquid may be
regarded as described by a single parameter.

accessible. For hydrogen-bonding liquids like glycerol or
sorbitol the x’s initially reported were anomalously small [44],
but it now appears that the reason is that density scaling does
not work very well for hydrogen-bonding liquids [45].

Recently, Coslovich and Roland presented computer
simulations of binary Lennard-Jones type systems where the
exponent of the repulsive term of the potential varied, taking
the values 8, 12, 24, and 36 [46]. Such systems may be cooled
to low temperatures where the viscosity is very large, without
crystallizing. Their simulation results obey the density scaling
expression equation (18), which by itself is an interesting
finding. Even more interesting is the fact that the exponent
x appears to be one third of the effective exponent describing
the approximate power law of the potential. For the standard
binary Lennard-Jones case, for instance, this latter exponent is
not 12 as naively expected, but a number close to 18 depending
on the precise choice of fitting criteria [41].

In [41] some of the present authors previously found
that there are strong energy–pressure correlations whenever
the repulsive part of the interaction is well described by
an inverse power law. Since this seems also to be the
criterion for a liquid obeying density scaling (equation (18)),
an obvious conjecture is [41] that: A glass-forming liquid is
strongly correlating if and only if it obeys density scaling.
Two liquids that in computer simulations were not strongly
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Figure 5. Correlation coefficients for a number of glass-forming
liquids between virial and potential energy thermal equilibrium
fluctuations as function of temperature (in reduced units). The liquids
represented are: LJ: standard Lennard-Jones, exp: monatomic liquid
with exponential repulsive forces, dumb-bell: a molecule model of
two atoms of unlike size, BLJ: the Kob–Andersen binary
Lennard-Jones liquid, methanol, and SPC/ E water. The figure shows
the same systems as those of figure 4 studied by computer
simulations. The two hydrogen-bonding liquids, water and methanol,
show poor correlation, the remaining systems are all strongly
correlating. For the latter the correlation even increases as
temperature rises; this is because at high temperature the particles
approach each other more in collisions than at low temperatures and
the inverse power law description of the works better the closer the
particles are.

correlating are water and methanol [41], and we surmise
that hydrogen-bonding liquids generally are not strongly
correlating. The argument is that the existence of ‘competing
interactions’ (van der Waals forces as well as the directional
hydrogen bonds) destroy significant correlations, implying that
hydrogen-bonding liquids are not well described by a single
‘order’ parameter. This is consistent with the finding that
hydrogen-bonding liquids do not obey density scaling [45].

If this conjecture is correct, by virtue of their simplicity
the class of strongly correlating liquids provides an obvious
starting point for theories for viscous liquids and glass
formation. It would be obvious to further conjecture that
also covalently bonding liquids are not strongly correlating,
again due to the directional nature of the bonds. Many of
these systems have fairly low fragility. Low-fragility liquids
are traditionally thought to be simple (e.g., have to almost
exponential relaxations if the liquid is almost Arrhenius). We
here conjecture almost the opposite, namely that many high-
fragility liquids in a certain sense are simpler than many
low-fragility liquids. Note that this simplicity, however,
does not relate to the degree of non-exponentiality: both
strongly correlating and ‘complex’ liquids may have close
to exponential relaxations; there is no obvious correlation
between the degree of non-exponentiality and how strongly
correlating a liquid is.

11. Summary and final remarks

We have argued that the old discussion of one or more
‘order’ parameters deserves to be revitalized. There are
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indications that at least some glass formers may be well
described by a single order parameter as regards their linear
thermoviscoelasticity. It is important to emphasize that no
claim is made that the molecular structure is completely
characterized by a single number. We now have an
experimentally useful criterion for whether or not a single-
parameter description is accurate. Computer simulations
confirm that some model liquids are well described by a
single parameter; these liquids are referred to as ‘strongly
correlating’. Since hydrogen-bonding liquids do not show
these correlations, we expect that liquids with directional
bonding are not well described by a single parameter, whereas
van der Waals bonded liquids are. Thus it is conjectured
that for van der Waals liquids the relaxing parts of the three
thermoviscoelastic response functions of equation (3) are all
proportional, whereas for hydrogen-bonding liquids this is
conjectured not to be the case. This prediction can be
tested once methods have been developed to measure the full
thermoviscoelastic compliance matrix.
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Density scaling as a property of strongly correlating viscous liquids

Thomas B. Schrøder, Ulf R. Pedersen, and Jeppe C. Dyre
DNRF Centre “Glass and Time,” IMFUFA, Department of Sciences,

Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
(Dated: June 2, 2008)

We address a recent conjecture according to which the relaxation time τ of a viscous liquid obeys
density scaling (τ = F (ργ/T ) where ρ is density) if the liquid is “strongly correlating,” i.e., has
almost 100% correlation between equilibrium virial and potential-energy fluctuations [Pedersen et
al., PRL 100, 011201 (2008)]. Computer simulations of two model liquids - an asymmetric dumbbell
model and the Lewis-Wahnström OTP model - confirm the conjecture and demonstrate that the
scaling exponent γ can be accurately predicted from equilibrium fluctuations.

PACS numbers: 64.70.P-

Understanding the glass transition depends on under-
standing the preceding highly viscous liquid phase, where
the relaxation time upon cooling approaches and exceeds
seconds [1]. Increasing the pressure also leads to much
slower relaxations. The study of glass-forming liquids un-
der high pressure has recently become popular, and many
data are now available on the properties of the alpha and
beta processes, etc., under pressure. If the density is ρ
and T is temperature, the last few years have shown that
for many highly viscous liquids the (alpha) relaxation
time follows the scaling expression

τ = F (ργ/T ) . (1)

The state of this rapidly developing field as of 2005 was
summarized in the review Ref. [2] by Roland et al. that
presented data for more than 50 liquids and polymers.

Equation (1) defines what is referred to as thermo-
dynamic or density scaling. Density scaling is a recent
discovery that, following pioneering works by Tölle and
Dreyfus et al. [3, 4], was proposed as a general princi-
ple in 2004 in papers by Alba-Simionesco and co-workers
and by Casalini and Roland [5, 6]. The former authors
demonstrated data collapse at varying temperature and
density following a more general expression than Eq. (1)
used by the latter authors.

Dreyfus and co-workers found γ = 4 for ortho-
terphenyl (OTP) and argued that this could be linked
to the r−12 repulsive term of the Lennard-Jones poten-
tial. It turned out, however, that γ = 4 is not a special
exponent [2], leaving the question of the microscopic in-
terpretation of γ open. Coslovich and Roland very re-
cently addressed this by computer simulations of binary
Lennard-Jones like liquids where the exponent of the re-
pulsive part of the potential took the values 8, 12, 24, 36
[7]. These model systems obey density scaling and the
exponent γ is to a good approximation 1/3 of the expo-
nent characterizing the effective power law of the repul-
sive core of the potential, as expected for an exact inverse
power-law potential [7] (see also Ref. [8]).

Recently, simulations of the thermal equilibrium fluc-
tuations of pressure, energy, and volume in different en-

sembles revealed that these quantities correlate strongly
for a number of model systems [9, 10]. For instance,
in the NVT ensemble (i.e., constant volume and tem-
perature) the following systems are “strongly correlat-
ing” in the sense that they show more than 90% corre-
lation between virial (the non-kinetic part of the pres-
sure) and potential energy: The standard Lennard-Jones
liquid, a liquid with exponential short-range repulsion,
the Kob-Andersen binary Lennard-Jones liquid, a seven-
site united-atom model of toluene, and the model system
studied below consisting of asymmetric “dumb-bell” type
molecules. The correlations derive from the repulsive
core of the intermolecular potential that, interestingly,
dominate fluctuations even at zero and slightly negative
pressure [10, 11]. For the standard Lennard-Jones liquid
the repulsive core is approximately described by a repul-
sive r−18 term [10, 12]. The exponent of the approximate
power law depends weakly on state point.

In view of the fact that both density scaling and the
strong correlations reflects an effective inverse power-law
of the repulsive core of the potential, the following con-
jecture was proposed in Ref. [10]: A viscous liquid is
strongly correlating if and only if it obeys density scal-
ing to a good approximation. There is evidence indi-
rectly supporting this: Highly viscous liquids with strong
hydrogen bonds are not strongly correlating because of
the “competing interactions” [10], and these liquids also
do not obey density scaling very well [2, 13, 14]. In
the present publication simulations are presented that
supports the conjecture and strengthens it by adding:
For strongly correlating viscous liquids density scaling is
obeyed with a scaling exponent γ that can be determined
from thermal equilibrium virial and potential energy fluc-
tuations. This amounts to the simplest possible assump-
tion; that it is the same part of the potential that domi-
nates equilibrium fluctuations and flow dynamics.

We performed NVT molecular dynamics simulations
[15] of 512 asymmetric dumbbell molecules consisting of
pairs of Lennard-Jones (LJ) spheres connected by rigid
bonds. The dumbbells were parameterized to mimic
toluene [19]. Charges of ±q (specified below) were ap-
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FIG. 1: Results from equilibrium molecular dynamics sim-
ulations of 512 asymmetric dumbbell molecules with, respec-
tively, a strong dipole moment (q = 0.5e, open symbols,
three isochores), and zero dipole moment (q = 0e, filled sym-
bols, three isochores and an isobar). (a) Correlation coeffi-

cients, R ≡ 〈∆W∆U〉 /
√
〈∆W 2〉 〈∆U2〉. (b) The ’slopes’,

γ ≡
√
〈(∆W )2〉 / 〈(∆U)2〉.

plied to the LJ spheres. The model was simulated with
two charges: i) q = 0 corresponding to the simulations
done in Refs. [9] and [10]. This version of the model is a
“strongly correlating viscous liquid”. ii) q = 0.5e (e be-
ing the elementary charge) resulting in a dipole moment
of 7.0D, i.e., almost 20 times stronger than in toluene,
and almost 4 times stronger than water. The purpose of
using such a large value of q was to break the correla-
tions and thus to have a version of the model that is not
strongly correlating.

If the virial is denoted by W , and U is the potential
energy, ∆W (t) ≡ W (t) − 〈W 〉 and ∆U(t) ≡ U(t)− 〈U〉,
where 〈...〉 indicates thermal average. The correlation co-
efficient is defined by R ≡ 〈∆W∆U〉 /√〈∆W 2〉 〈∆U2〉.
R is plotted for a several state points in Fig. 1(a). For
q = 0 (filled symbols) all investigated state points have
R > 0.95. For q = 0.5e (open symbols) the correlation
coefficient is significantly smaller; the Coulomb interac-
tions do indeed break the correlations as expected [10].

We define γ ≡ √〈(∆W )2〉 / 〈(∆U)2〉. If R ≈ 1 it fol-
lows that ∆W (t) ≈ γ∆U(t) in their instantaneous fluctu-
ations [10], and consequently we refer to γ as the ’slope’.
According to our conjecture, the slope γ is also the scaling
exponent in Eq. (1). In Fig. 1(b) we show the slopes for
all investigated state points. For q = 0 (filled symbols)
there is a small, but significant dependence on density
and temperature. Thus if the conjecture is correct, den-
sity scaling can not be exact: To apply density scaling a
single value of γ is needed, but the γ we get from the fluc-
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FIG. 2: Arrhenius plot of the diffusion coefficient, D, for the
asymmetric dumbbell model.

tuations depends slightly on the state point [10]. In the
following we consider for q = 0 two values of the scaling
exponent: the slope averaged over all state points with
q = 0; γ = 6.1, and the slope averaged over the three
data sets with the smallest slopes for q = 0 (ρ = 1.109
g/cm3, ρ = 1.166 g/cm3 and P=2.0GPa); γ = 5.9, i.e.,
the ’best’ compromise if we chose to ignore the ρ = 1.006
g/cm3 isochore. For q = 0.5e the slopes are less density
dependent with a mean value γ = 4.9.

In the following we apply density scaling to the dif-
fusion coefficient estimated from the long-time behavior
of the mean-square displacement,

〈
∆r2(t)

〉
, of the large

spheres (the “phenyl group”) [22]. The diffusion coeffi-
cients for all state points studied are given in Fig. 2.

Following Coslovich and Roland [7] we apply den-
sity scaling to the reduced diffusion coefficient, D∗ ≡
(N/V )1/3(kBT/m)−1/2D where m is the mass of the
molecules. In Fig. 3(a) D∗ is plotted for q = 0 as a func-
tion of 1000ργ/T with four different values of γ. Clearly,
density scaling works neither with γ = 7.0 or γ = 5.0.
Comparing the scaling with γ = 6.1 to the data without
scaling (filled symbols in Fig. 2), we find here good data
collapse; by far most of the density dependence is cap-
tured by the density scaling with γ = 6.1. With γ = 5.9
the data collapse is even better for three of the data sets,
whereas one data set deviates slightly from the master
curve comprised of these three sets. This is the isochore
ρ = 1.006 g/cm3, i.e., the one that was ignored when
choosing γ = 5.9 (Fig. 1(b)).

The conclusion drawn from Fig. 3 is two-fold: i) Den-
sity scaling is approximate (as discussed above) - for a
larger region of state points scaling will be less perfect.
ii) For a given range of state points, the scaling exponent
can be found by studying equilibrium fluctuations.

In Fig. 4 the reduced diffusion coefficients D∗ for
q = 0.5e are plotted as a function of 1000ργ/T with three
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FIG. 3: The reduced diffusion coefficient, D∗ ≡
(N/V )1/3(kBT/m)−1/2D, for the asymmetric dumbbell
model with q = 0 scaled according to Eq. (1), with four differ-
ent scaling exponents: γ = 7.0 (Upper set of curves, D∗ mul-
tiplied by 100), γ = 6.1 (Second set of curves, D∗ multiplied
by 10), γ = 5.9 (Third set of curves), and γ = 5.0 (Lower set
of curves, D∗ divided by 10). As a guide to the eye, the equa-

tion D∗ = 4.07 × 10−2 exp
(
−462/(T/ρ5.9 − 60.8)

)
is plotted

as a fit to the three collapsing curves for γ = 5.9.

different values of γ. The value γ = 4.9 chosen from the
equilibrium fluctuations (Fig. 1(b)), is found to be a rea-
sonable scaling exponent. However, as conjectured, the
data collapse achieved is inferior to that for the strongly
correlating version of the model (q = 0).

To test the generality of our findings, we repeated
the analysis for the Lewis-Wahnström OTP model (LW-
OTP) [15, 23] (see also Refs. [24] and [25]). The results
achieved for this model (Fig. 5) are qualitatively similar
to the results for the asymmetric dumbbell model with
q = 0; (i) LW-OTP is strongly correlating (0.91 < R <
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FIG. 4: The reduced diffusion coefficient, D∗ ≡
(N/V )1/3(kBT/m)−1/2D, for the asymmetric dumbbell
model with q = 0.5e scaled according to Eq. (1), with three
different scaling exponents: γ = 6.0 (Upper set of curves, D∗

multiplied by 10), γ = 4.9 (Middle set of curves), and γ = 4.0
(Lower set of curves, D∗ divided by 10).

0.92) [26], (ii) the slope is slightly state point depen-
dent, (iii) choosing the average slope as scaling exponent
γ gives good data collapse.

In summary, we have presented numerical evidence
for the conjecture that density scaling is a property of
strongly correlating viscous liquids. For the two strongly
correlating models investigated density scaling applies
with a scaling exponent that can be accurately predicted
from the equilibrium fluctuations. This represents a step
forward in the theoretical understanding of density scal-
ing. In particular, the scaling exponent γ should no
longer be regarded as an empirical fitting parameter. In
computer simulations γ can be estimated directly from
the equilibrium fluctuations. Via the fluctuation dissipa-
tion theorem the equilibrium fluctuations determine the
frequency-dependent linear thermoviscoelastic response
functions - this fact provides a possible future route for
independent experimental estimation of the scaling ex-
ponent γ [9, 27].

This work was supported by the Danish National Re-
search Foundation’s (DNRF) centre for viscous liquid dy-
namics “Glass and Time.”
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FIG. 5: The reduced diffusion coefficient, D∗ ≡
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We show that a number of model liquids at fixed volume exhibit strong correlations between
equilibrium fluctuations of the configurational parts of �instantaneous� pressure and energy. We
present detailed results for 13 systems, showing in which systems these correlations are significant.
These include Lennard-Jones liquids �both single- and two-component� and several other simple
liquids, neither hydrogen-bonding liquids such as methanol and water, nor the Dzugutov liquid,
which has significant contributions to pressure at the second nearest neighbor distance. The
pressure-energy correlations, which for the Lennard-Jones case are shown to also be present in the
crystal and glass phases, reflect an effective inverse power-law potential dominating fluctuations,
even at zero and slightly negative pressure. An exception to the inverse power-law explanation is a
liquid with hard-sphere repulsion and a square-well attractive part, where a strong correlation is
observed, but only after time averaging. The companion paper �N. P. Bailey et al., J. Chem. Phys.
129, 184508 �2008�� gives a thorough analysis of the correlations, with a focus on the
Lennard-Jones liquid, and a discussion of some experimental and theoretical consequences. © 2008
American Institute of Physics. �DOI: 10.1063/1.2982247�

I. INTRODUCTION

Physicists are familiar with the idea of thermal fluctua-
tions in equilibrium. They also know how to extract useful
information from them, using linear response theory.1–4

These methods started with Einstein’s observation that the
specific heat in the canonical ensemble is determined by the
magnitude of energy fluctuations. In any thermodynamic sys-
tem some variables are fixed and some fluctuate. The mag-
nitude of the variances of the latter, as well as their mutual
covariances, determines the thermodynamic “response”
parameters.1 For example, in the canonical �NVT� ensemble,
pressure p and energy E fluctuate; the magnitude of pressure
fluctuations is related to the isothermal bulk modulus
KT�−V��p /�V�T, that of the energy fluctuations to the spe-
cific heat at constant volume cV�T��S /�T�V, while the co-
variance ��p�E� is related4 to the thermal pressure coeffi-
cient �V���p /�T�V. If the latter is nonzero, it implies a
degree of correlation between pressure and energy fluctua-
tions. There is no obvious reason to suspect any particularly
strong correlation, and to the best of our knowledge none has
ever been reported. However, in the course of investigating
the physics of highly viscous liquids by computer simulation,
we noted strong correlations between pressure and energy
equilibrium fluctuations in several model liquids, also in the
high temperature, low-viscosity state. These included the
most studied of all computer liquids, the Lennard-Jones sys-
tem. Surprisingly, these strong correlations survive crystalli-
zation, and they are also present in the glass phase. “Strong”
here and henceforth means a correlation coefficient of order

0.9 or larger. In this paper we examine several model liquids
and detail which systems exhibit strong correlations and
which do not. In the companion paper5 �referred to as Paper
II� we present a detailed analysis of the correlations for the
single-component Lennard-Jones �SCLJ� system, and discuss
some consequences.

Specifically, the fluctuations that are in many cases
strongly correlated are those of the configurational parts of
pressure and energy. The �instantaneous� pressure p and en-
ergy E have
contributions both from particle momenta and positions as
follows:

p = NkBT�p1, . . . ,pN�/V + W�r1, . . . ,rN�/V ,

�1�
E = K�p1, . . . ,pN� + U�r1, . . . ,rN� ,

where K and U are the kinetic and potential energies, respec-
tively. Here T�p1 , . . . ,pN� is the “kinetic temperature,”4 pro-
portional to the kinetic energy per particle. The configura-
tional contribution to pressure is the virial W, which is
defined4 by

W = −
1

3�
i

ri · �ri
U , �2�

where ri is the position of the ith particle. Note that W has
dimension energy. For a pair interaction we havea�Electronic mail: nbailey@ruc.dk.
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U pair = �
i�j

v�rij� , �3�

where rij is the distance between particles i and j and v�r� is
the pair potential. The expression for the virial �Eq. �2��
becomes4

Wpair = −
1

3�
i�j

rijv��rij� = −
1

3�
i�j

w�rij� , �4�

where for convenience we define

w�r� � rv��r� . �5�

Figure 1�a� shows normalized instantaneous values of p
and E, shifted and scaled to have zero mean and unit vari-
ance, as a function of time for the standard SCLJ liquid,
while Fig. 1�b� shows the corresponding fluctuations of W
and U. We quantify the degree of correlation by the standard
correlation coefficient R, defined by

R =
��W�U�

	���W�2�	���U�2�
. �6�

Here the angle brackets � � denote thermal averages while �
denotes deviation from the average value of the given quan-
tity. The correlation coefficient is ensemble dependent, but
our main focus—the R→1 limit—is not. Most of the simu-
lations reported below were carried out in the NVT ensemble.
Another important characteristic quantity is the “slope” �,
which we define as the ratio of standard deviations as fol-
lows:

� �
	���W�2�
	���U�2�

. �7�

Considering the “total” quantities, p and E �Fig. 1�a��, there
is some correlation; the correlation coefficient is 0.70. For
the configurational parts, W and U, on the other hand �Fig.
1�b��, the degree of correlation is much higher, R=0.94 in
this case. Another way to exhibit the correlation is a scatter
plot of W against U, as shown in Fig. 2�a�.

Is this correlation surprising? Actually, there are some
interatomic potentials for which there is a 100% correlation

FIG. 1. �Color online� Equilibrium fluctuations of �a� pressure p and energy
E and �b� virial W and potential energy U, in a single-component Lennard-
Jones system simulated in the NVT ensemble at �=34.6 mol / l and T
=80 K �argon units�. The time-averaged pressure was close to zero
�1.5 MPa�. The correlation coefficient R between W and U is 0.94, whereas
the correlation coefficient is only 0.70 between p and E. Correlation coeffi-
cients were calculated over the total simulation time �10 ns�.

FIG. 2. �Color online� �a� Scatter plot of instantaneous virial W and poten-
tial energy U from the simulation of Fig. 1. The dashed line is a guide to the
eyes, with a slope determined by the ratio of standard deviations of W and U
�Eq. �7��. �b� Example of a system with almost no correlation between W
and U: TIP5P water at T=12.5 °C and density of 1007.58 kg /m3 �NVT�.
This system has Coulomb, in addition to Lennard-Jones, interactions.

184507-2 Bailey et al. J. Chem. Phys. 129, 184507 �2008�
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between virial and potential energy. If we have a pair poten-
tial of the form v�r��r−n, an inverse power law, then w�r�
=−nv�r� and Wpair= �n /3�Upair, holds exactly. In this case the
correlation is 100% and �=n /3.

Conversely, suppose a system is known to be governed
by a pair potential and that there is 100% correlation be-
tween W and U. We can write both U and W at any given
time t as integrals over the instantaneous radial distribution
function defined4 as

g�r,t� �
2

N�
�
i�j

��r − rij�t��/�4�r2� , �8�

from which

U�t� =
N

2
�


0

	

dr4�r2g�r,t�v�r� �9�

and

W�t� = −
N

6
�


0

	

dr4�r2g�r,t�w�r� . �10�

Here the factor of 1
2 is to avoid double counting, and �

=N /V is the number density. 100% correlation means that
W�t�=�U�t� holds for arbitrary g�r , t� �a possible additive
constant could be absorbed into the definition of U�. In par-
ticular, we could consider g�r , t�=��r−r0�.6 Substituting this
into the above expressions, the integrals go away and we find
w�r0�=−3�v�r0�. Since r0 was arbitrary, v��r�=−3�v�r� /r,
which has the solution v�r��r−3�. This connection between
an inverse power-law potential and perfect correlations sug-
gests that strong correlations can be attributed to an effective
inverse power-law potential, with exponent given by three
times the observed value of �. This will be detailed in Paper
II, which shows that while this explanation is basically cor-
rect, matters are somewhat more complicated than this. For
instance, the fixed volume condition, under which the strong
correlations are observed, imposes certain constraints on
g�r , t�.

The celebrated Lennard-Jones potential is given7 by

vLJ�r� = 4
���

r
12

− ��

r
6� . �11�

One might think that in the case of the Lennard-Jones poten-
tial the fluctuations are dominated by the repulsive r−12 term,
but this naive guess leads to a slope of 4, rather than the 6.3
seen in Fig. 2�a�. Nevertheless the observed correlation and
the above mentioned association with inverse power-law po-
tentials suggest that an effective inverse power-law descrip-
tion �involving short distances�, with a more careful identi-
fication of the exponent, may apply. In fact, the presence of
the second, attractive, term increases the steepness of the
repulsive part, thus increasing the slope of the correlation, or
equivalently the effective inverse power-law exponent �Fig.
3�. Note the distinction between repulsive term and repulsive
part of the potential: The latter is the region where v�r� has a
negative slope; thus, the region r�rm �rm being the distance
where the pair potential has its minimum, 21/6� for vLJ�. This
region involves both the repulsive and attractive terms �see

Fig. 3, which also illustrates the approximation of the repul-
sive part by a power law with exponent 18�. The same divi-
sion was made by Weeks, Chandler, and Andersen in their
noted paper of 1971,8 in which they showed that the thermo-
dynamic and structural properties of the Lennard-Jones fluid
were dominated by the repulsive part at high temperatures
for all densities, and also at low temperatures for high den-
sities. Ben-Amotz and Stell9 noted that the repulsive core of
the Lennard-Jones potential may be approximated by an in-
verse power law with n�18–20. The approximation by an
inverse power law may be directly checked by computing the
potential and virial with an inverse power-law potential for
configurations drawn from actual simulations using the
Lennard-Jones potential. The agreement �apart from additive
constants� is good; see Paper II.

Consider now a system with different types of pair inter-
actions, for example, a binary Lennard-Jones system with
AA, BB, and AB interactions, or a hydrogen-bonding system
modeled via both Lennard-Jones and Coulomb interactions.
We can write arbitrary deviations of U and W from their
mean values, denoted �U and �W, as a sum over types
�indexed by t; sums over pairs of a given type are implicitly
understood� as follows:

�U = �
t

�Ut, �W = �
t

�Wt. �12�

Now, supposing there is near-perfect correlation for the indi-
vidual terms with corresponding slopes �t, we can rewrite
�W as

�W = �
t

�t�Ut. �13�

If the �t are all more or less equal to a single value �, then
this can be factored out and we get �W���U. Thus the
existence of different Lennard-Jones interactions in the same
system does not destroy the correlation, since they have �t

�6. On the other hand the slope for Coulomb interaction,
which as an inverse power law has perfect W, U-correlations,
is 1 /3, so we cannot expect overall strong correlation in this
case �Fig. 2�b��. Indeed such reasoning also accounts for the

FIG. 3. �Color online� Illustration of the “effective inverse power law”
chosen in this case to match the Lennard-Jones potential and its first two
derivatives at the point r=�. The vertical line marks the division into the
repulsive and attractive parts of the Lennard-Jones potential.

184507-3 Pressure-energy correlations in liquids. I. J. Chem. Phys. 129, 184507 �2008�
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reduction of correlation when the total pressure and energy
are considered: �E=�U+�K, while �for a large atomic sys-
tem� V�p=��U+ �2 /3��K. The fact that � is �for the
Lennard-Jones potential� quite different from 2 /3 implies
that the p, E-correlation is significantly weaker than that of
W, U �Fig. 1�. Even in cases of unequal slopes, however,
there can be circumstances under which one kind of term,
and therefore one slope, dominates the fluctuations. In this
case strong correlations will be observed. Examples include
the high-temperature limits of hydrogen-bonded liquids �Sec.
III D� and the time-averaged �total� energy and pressure in
viscous liquids �Paper II�.

Some of the results detailed below were published pre-
viously in letter form;10 the aim of the present contribution is
to make a comprehensive report covering more systems,
while Paper II contains a detailed analysis and discusses ap-
plications. In the following section, we describe the systems
simulated. In Sec. III we present the results for all the sys-
tems investigated, in particular, the degree of correlation
�correlation coefficient R� and the slope. Section IV gives a
summary.

II. SIMULATED SYSTEMS

A range of simulation methods, thermodynamic en-
sembles, and computational codes were used. One reason for
this was to eliminate the possibility that strong correlations
are an artifact of using a particular ensemble or code. In
addition, no code can simulate the full range of systems pre-
sented. Most of the data we present are from molecular dy-
namics �MD� simulations, although some are from Monte
Carlo11 �MC� and event-driven12 �ED� simulations. Most of
the MD simulations �and of course all MC simulations�, had
fixed temperature �NVT�, while some had fixed total energy
�NVE�. Three MD codes were used: GROMACS �GRO�,13,14

ASAP �ASAP�,15 and DIGITALMATERIAL �DM�.16 Homemade
�HM� codes were used for the MC and ED simulations.

We now list the 13 systems studied, giving each a code
name for future reference. The systems include monatomic
systems interacting with pair potentials, binary atomic sys-
tems interacting with pair potentials, molecular systems con-
sisting of Lennard-Jones particles joined rigidly together in a
fixed configuration �here the Lennard-Jones interaction mod-
els the van der Waals forces�, molecular systems that have
Coulomb as well as Lennard-Jones interactions, metallic sys-
tems with a many-body potential, and a binary system inter-
acting with a discontinuous “square-well” potential. Included
with each system is a list specifying which simulation meth-
od�s�, which ensemble�s�, and which code�s� were used
�semicolons separate the method�s� from the ensemble�s� and
the ensemble�s� from the code�s��. Details of the potentials
are given in Appendix A.

CU: Pure liquid Cu simulated using the many-body po-
tential derived from effective medium theory �EMT�;17,18

�MD; NVE; ASAP�.
DB: Asymmetric “dumbbell” molecules19 consisting of

two unlike Lennard-Jones spheres connected by a rigid bond;
�MD; NVT; GRO�.

DZ: The potential introduced by Dzugutov20 as a candi-

date for a monatomic glass-forming system. Its distinguish-
ing feature is a peak in v�r� around 1.5�, after which it
decays exponentially to zero at a finite value of r; �MD;
NVT, NVE; DM�.

EXP: A system interacting with a pair potential with ex-
ponential repulsion and a van der Waals attraction; �MC;
NVT; HM�.

KABLJ: The Kob–Andersen binary Lennard-Jones
liquid;21 �MD; NVT, NVE; GRO, DM�.

METH: The GROMOS �Ref. 22� three-site model for
methanol; �MD; NVT; GRO�.

MGCU: A model of the metallic alloy Mg85Cu15 using
an EMT-based potential;23 �MD; NVE; ASAP�.

OTP: A three-site model of the fragile glass-former
orthoterphenyl �OTP�;24 �MD; NVT; GRO�.

SCLJ: The standard single-component Lennard-
Jonessystem with the interaction given in Eq. �11�; �MD,
MC; NVT, NVE; GRO, DM�.

SPC/E: The SPC/E model of water;25 �MD; NVT; GRO�.
SQW: A binary model with a pair interaction consisting

of an infinitely hard core and an attractive square well;12,26

�ED; NVE; HM�.
TIP5P: A five-site model for liquid water, which repro-

duces the density anomaly;27 �MD; NVT; GRO�.
TOL: A seven-site united-atom model of toluene; �MD;

NVT; GRO�.
The number of particles �atoms or molecules� was in the

range 500–2000. Particular simulation parameters �N ,� ,T,
duration of simulation� are given when appropriate in
Sec. III.

III. RESULTS

A. The standard single-component
Lennard-Jones system

SCLJ is the system we have most completely investi-
gated. W ,U-plots are shown for a range of thermodynamic
state points in Fig. 4. Here the ensemble was NVT with N
=864, and each simulation consisted of a 10 ns run taken
after 10 ns of equilibration; for all SCLJ results so-called
“argon” units are used ��=0.34 nm, 
=0.997 kJ /mol�. Each
elongated oval in Fig. 4 is a collection of W ,U pairs for a
given state point. Varying temperature at fixed density moves
the oval parallel to itself, following an almost straight line as
indicated by the dashed lines. Different densities correspond
to different lines, with almost the same slope. In a system
with a pure inverse power-law interaction, the correlation
would be exact, and moreover the data for all densities
would fall on the same straight line �see the discussion im-
mediately after Eq. �5��. Our data, on the other hand, show a
distinct dependence on volume, but for a given volume, be-
cause of the strong correlation, the variation in W is almost
completely determined by that of U.

Values of correlation coefficient R for the state points of
Fig. 4 are listed in Table I, along with the slope �. In Fig. 5
we show the temperature dependence of both R and � for
different densities. Lines have been drawn to indicate isoch-
ores and one isobar �p=0�. Note that when we talk of an
isobar here, we mean a set of NVT ensembles with V ,T
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chosen so that the thermal average of p takes on a given
value, rather than fixed-pressure ensembles. This figure
makes it clear that for fixed density, R increases as T in-
creases, while it also increases with density for fixed tem-
perature; the slope slowly decreases in these circumstances.
In fact, it eventually reaches 4, the value expected for a pure

r−12 interaction �e.g., at �=34.6 mol / l, T=1000 K, �=4.61,
see Ref. 10�. This is consistent with the idea that the repul-
sive part, characterized by an effective inverse power law,
dominates the fluctuations: Increasing either temperature or
density increases the frequency of short-distance encounters
while reducing the typical distances of such encounters. On
the other hand, along an isobar, these two effects work
against each other, since as T increases, the density de-
creases. The density effect “wins” in this case, which is
equivalent to a statement about the temperature and volume
derivative of R: Our simulations imply that

� �R

�T


p
= � �R

�T


V
+ � �R

�V


T
� �V

�T


p
� 0, �14�

which is equivalent to

FIG. 4. �Color online� Scatter plots of the configura-
tional parts of pressure and energy—virial vs potential
energy—for several state points of the SCLJ liquid
�NVT�. Each oval represents simulations at one particu-
lar temperature and density where each data point
marks instantaneous values of virial and potential en-
ergy. The dashed lines mark constant density paths with
the highest density to the upper left �densities: 39.8,
37.4, 36.0, 34.6, and 32.6 mol / l�. State points on the
dotted line have zero average pressure. The plot in-
cludes three crystallized samples �lower left corner�,
discussed at the end of Sec. III A and, in more detail, in
Paper II �reproduced from Ref. 10�.

TABLE I. Correlation coefficients R and effective slopes � for the SCLJ
system for the state points in Fig. 4. p is the thermally averaged pressure.
The last five states were chosen to approximately follow the isobar p=0.

� �mol/l� T �K� p �MPa� Phase R �

42.2 12 2.6 Glass 0.905 6.02
39.8 50 −55.5 Crystal 0.987 5.85
39.8 70 −0.5 Crystal 0.989 5.73
39.8 90 54.4 Crystal 0.990 5.66
39.8 110 206.2 Liquid 0.986 5.47
39.8 150 309.5 Liquid 0.988 5.34
37.4 60 −3.7 Liquid 0.965 6.08
37.4 100 102.2 Liquid 0.976 5.74
37.4 140 192.7 Liquid 0.981 5.55
37.4 160 234.3 Liquid 0.983 5.48
36.0 70 −0.7 Liquid 0.954 6.17
36.0 110 90.3 Liquid 0.969 5.82
36.0 150 169.5 Liquid 0.977 5.63
36.0 190 241.4 Liquid 0.981 5.49
36.0 210 275.2 Liquid 0.982 5.44
34.6 60 −42.5 Liquid 0.900 6.53
34.6 100 41.7 Liquid 0.953 6.08
34.6 140 114.5 Liquid 0.967 5.80
34.6 200 211.0 Liquid 0.977 5.57
32.6 70 −35.6 Liquid 0.825 6.66
32.6 90 −0.8 Liquid 0.905 6.42
32.6 110 31.8 Liquid 0.929 6.22
32.6 150 91.7 Liquid 0.954 5.95
32.6 210 172.7 Liquid 0.968 5.68

37.4 60 −3.7 Liquid 0.965 6.08
36.0 70 −0.7 Liquid 0.954 6.17
34.6 80 1.5 Liquid 0.939 6.27
32.6 90 00 Liquid 0.905 6.42
42.2 12 2.6 Glass 0.905 6.02

FIG. 5. �Color online� Upper plot, correlation coefficient R for the SCLJ
system as a function of temperature for several densities �NVT�. This figure
makes clear the different effects of density and temperature on R. Lower
plot, effective slope � as a function of T. Simulations at temperatures higher
than those shown here indicate that the slope slowly approaches the value 4
as T increases. This is to be expected because as collisions become harder,
involving shorter distances, the effective inverse power-law exponent ap-
proaches the 12 from the repulsive term of the Lennard-Jones potential.
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� �R

�T


V
� − � �R

�V


T
V�p = �� �R

��


T
�p, �15�

where �p���V /�T�p /V is the thermal expansivity at con-
stant pressure and � is the particle density. This can be recast
in terms of logarithmic derivatives �valid whenever
��R /���T0� as follows:

� �R

� ln�T�V

� �R

� ln���T

� T�p. �16�

Thus what we observe in the simulations, namely, that
the correlation becomes stronger as temperature is reduced at
fixed pressure, is a priori more to be expected when the
thermal expansivity is large �since then the right hand side of
Eq. �16� is large�. This has particular relevance in the context
of supercooled liquids, which we discuss in Paper II, because
these are usually studied by lowering temperature at fixed
pressure. On the other hand if the expansivity becomes
small, as for example, when a liquid passes through the glass
transition, inequality �16� is a priori less likely to be satis-
fied. We have, in fact, observed this in a simulation of OTP:
Upon cooling through the �computer� glass transition, the
correlation became weaker with further lowering of tempera-
ture at constant pressure.

Remarkably, the correlation persists when the system has
crystallized, as seen in the data for the highest density—the
occurrence of the first-order phase transition can be inferred
from the gap between the data for 90 and 110 K, but the data
fall on the same line above and below the transition. One
would not expect the dynamical fluctuations of a crystal,
which are usually assumed to be well described by a har-
monic approximation, to resemble those of the high-
temperature liquid. In fact, for a one-dimensional crystal of
particles interacting with a harmonic potential v�r�= 1

2k�r
−rm�2, it is easy to show �Paper II� that there is a negative
correlation with slope equal to −2 /3. To investigate whether
the harmonic approximation ever becomes relevant for the
correlations, we prepared a perfect fcc crystal of SCLJ par-
ticles at zero temperature and simulated it at increasing tem-
peratures, from 0.02 to 90 K in argon units, along a constant
density path. The results are shown in Fig. 6. Clearly the
correlation is maintained right down to zero temperature.
The harmonic approximation is therefore useless for dealing
with the pressure fluctuations even as T→0, because the
slope is far from −2 /3. The reason for this is that the domi-
nant contribution to the virial fluctuations comes from the
third-order term, as shown in Paper II.

B. A case with little correlation: The Dzugutov system

Before presenting data for all the systems studied, it is
useful to see what it means for the correlation not to hold. In
this subsection we consider the Dzugutov system,20 whose
potential contains a peak at the second-neighbor distance
�Fig. 7, see Appendix A for details� whose presence might be
expected to interfere with the effectiveness of an inverse
power-law description. In the next subsection we show how

in a specific model of water the lack of correlation can be
explicitly seen to be the result of competing interactions.
Figure 8 shows W ,U-plots for the Dzugutov system for two
nearby temperatures at the same density. The ovals are much
less elongated than was the case for SCLJ, indicating a sig-
nificantly weaker correlation—the correlation coefficients
here are 0.585 and 0.604, respectively. In Paper II it is shown
explicitly that the weak correlation is due to contributions
arising from the second peak. Note that the major axes of the
ovals are not aligned with the line joining the state points,
given by the mean values of W and U, here identifiable as the
intersection of the dashed and straight lines. On the other
hand, the lines of best fit from linear regression, indicated by
the dashed lines in each case, do coincide with the line con-
necting state points. This holds generally, a fact which fol-
lows from statistical mechanics �Appendix B�. The interest-
ing thing is rather that the major axes point in different
directions, whereas in the SCLJ case they are also aligned

FIG. 6. �Color online� Scatter plot of the W ,U-correlations for a perfect
face-centered-cubic �fcc� crystal of Lennard-Jones atoms at temperatures 1,
2, 3, 5, 10, 20, 30, 40, 50, 60, 70, and 80 K, as well as for defective crystals
�i.e., crystallized from the liquid� at temperatures 50, 70, and 90 K �NVT�.
The dashed line gives the best fit to the �barely visible� lowest-temperature
data �T=1 K�. The inset shows the temperature dependence of R at very low
temperatures. The crystalline case is examined in detail in Paper II, where
we find that R does not converge to unity at T=0, but rather to a value very
close to unity. All state points refer to the highest density of Fig. 4, 39.8
mol/l.

FIG. 7. �Color online� A plot of the Dzugutov pair potential, with the
Lennard-Jones potential �shifted by a constant� shown for comparison.
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with the state-point line. The linear-regression slope, being
equal to ��U�W� / ���U�2�, treats W and U in an asymmetric
manner by involving ���U�2�, but not ���W�2�. This is be-
cause a particular choice of independent and dependent vari-
ables is made. If instead we plotted U against W, we would
expect the slope to be simply the inverse of the slope in the
W ,U-plot, but, in fact, the new slope is ��U�W� / ���W�2�.
This equals the inverse of the original slope only in the case
of perfect correlation, where ��U�W�2= ���W�2����U�2�.
For our purposes a more symmetric estimate of the slope is
desired, one which agrees with the linear-regression slope in
the limit of perfect correlation. We use simply the ratio of
standard deviations 	���W�2� /	���U�2� �Eq. �7��. This
slope was used to plot the dashed line in Fig. 2�a� and the
full lines in Fig. 8, where it clearly represents the orientation
of the data better.28

C. When competition between van der Waals
and Coulomb interactions kills the correlation:
TIP5P water

As we shall see in the next section, the systems that
show little correlation include several, which involve both
van der Waals and hydrogen bonding, modeled by Lennard-
Joness and Coulomb interactions, respectively. As noted al-
ready, the latter, being a pure inverse power law �n=1�, by
itself exhibits perfect correlation with slope �=1 /3, while
the Lennard-Jones part has near perfect correlation. How-
ever, the significant difference in slopes means that no strong
correlation is seen for the full interaction. To check explicitly
that this is the reason the correlation is destroyed we have
calculated the correlation coefficients for the Lennard-Jones
and Coulomb parts separately in a model of water. Water is
chosen because the density of hydrogen bonds is quite high.
Simulations were done with the TIP5P model of water,27

which has the feature that the density maximum is reason-

ably well reproduced. This existence of the density maxi-
mum is, in fact, related to pressure and energy becoming
uncorrelated, as we shall see.

Figure 9 shows the correlation coefficients and slopes for
a range of temperatures; the correlation is almost nonexist-
ent, passing through zero around where the density attains its
maximum value. We have separately determined the correla-
tion coefficient of the Lennard-Jones part of the interaction;
it ranges from 0.9992 at −25 °C to 0.9977 at 75 °C, even
larger than we have seen in the SCLJ system. The reason for
this is that the �attractive� Coulomb interaction forces the
centers of the Lennard-Jones interaction closer together than
they would be otherwise; thus, the relevant fluctuations are
occurring higher up the repulsive part of the Lennard-Jones
pair potential. Correspondingly the slope from this interac-
tion ranges between 4.45 and 4.54, closer to the high-T, high
density limit of 4 than was the case for the SCLJ system.
This is confirmed by inspection of the oxygen-oxygen radial
distribution function in Ref. 27 where it can be seen that the
first peak lies entirely to the left of the vLJ=0 distance �
=0.312 nm. Finally note that the near coincidence between
the vanishing of the correlation coefficient and the density
maximum, which is close to the experimental value of 4 °C,
is not accidental: The correlation coefficient is proportional
to the configurational part of the thermal pressure coefficient
�V �Paper II�. The full �V vanishes exactly at the density
maximum �4 °C�, but the absence of the kinetic term means
that the correlation coefficient vanishes at a slightly higher
temperature ��12 °C�.

D. Results for all systems

In Fig. 10 we summarize the results for the various sys-
tems. Here we plot the numerator of Eq. �6� against the de-
nominator, including factors of 1 / �kBTV� in both cases to
make an intensive quantity with units of pressure. Since R
cannot be greater than unity, no points can appear above the
diagonal. Being exactly on the diagonal indicates perfect cor-
relation �R=1�, while being significantly below indicates
poor correlation. Different types of symbols indicate differ-

FIG. 8. �Color online� Scatter plot of W ,U-correlations for the Dzugutov
system at density 0.88 and temperatures 0.65 and 0.70 �NVE�. The dashed
lines indicate the best-fit line using linear regression. These are consistent
with the temperature dependence of the mean values of �W� and �U�, as they
should be �see Appendix B�, but they clearly do not represent the direction
of greatest variance. The full lines have slopes equal to the ratio of standard
deviations of the two quantities �Eq. �7��. The correlation coefficient is 0.585
and 0.604 for T=0.65 and T=0.70, respectively.

FIG. 9. Plot of R for TIP5P water in NVT simulations with densities chosen
to give an average pressure of 1 atm. Not only is the magnitude of R low
�less than 0.2� in the temperature range shown, but it changes sign around
the density maximum. The vertical arrow indicates the state point used for
Fig. 2�b�.
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ent systems, as well as different densities for the same sys-
tem, while symbols of the same type correspond to different
temperatures.

All of the simple liquids, SCLJ, KABLJ, EXP, DB, and
TOL, show strong correlations, while METH, SPC/E, and
TIP5P show little correlation. Values of R and � at selected
state points for all systems are listed in Table II. What deter-
mines the degree of correlation? The Dzugutov and TIP5P
cases have already been discussed. The poor correlation for
METH and SPC/E is �presumably� because these models,
like TIP5P, involve both Lennard-Jones and Coulomb inter-
actions. In systems with multiple Lennard-Jones species, but
without any Coulomb interaction, there is overall a strong
correlation because the slope is almost independent of the
parameters for a given kind of pair.

As the temperature is increased, the data for the most
poorly correlated systems, which are all hydrogen-bonding
organic molecules, slowly approach the perfect-correlation
line. This is consistent with the idea that this correlation is
observed when fluctuations of both W and U are dominated
by close encounters of pairs of neighboring atoms; at higher
temperature there are increasingly many such encounters,
which therefore come to increasingly dominate the fluctua-
tions. Also because the Lennard-Jones potential rises much
more steeply than the Coulomb potential, the latter becomes
less important as short distances dominate more. Although
not obvious in the plot, we find that increasing the density at
fixed temperature generally increases the degree of correla-
tion, as found in the SCLJ case; this is also consistent with
the increasing relevance of close encounters or collisions.

A system quite different from the others presented so far
is the binary square-well system, SQW, with a discontinuous
potential combining hard-core repulsion and a narrow attrac-
tive well �Fig. 11; see Appendix A for details�. Such a po-

TABLE II. Correlation coefficients and slopes at selected state points for all
investigated systems besides SCLJ. Argon units were used for DZ, EXP,
KABLJ, and SQW by choosing the length parameter �of the larger particle
when there were two types� to be 0.34 nm and the energy parameter to be
0.997 kJ /mol. The phase is indicated as liquid or glass. SQW data involve
time averaging over periods 3.0, 3.0, 8.0, and 9.0, respectively, for the four
listed state points. A minus sign has been included with the slope when R
�0; note that the � values only really make sense as slopes when �R� is
close to unity. The ensemble was NVT except for CU, DZ, MGCU, and
SQW, where it was NVE.

System � �mol/l� T �K� Phase R �

CU 125.8 1500 Liquid 0.907 4.55
CU 125.8 2340 Liquid 0.926 4.15
DB 11.0 130 Liquid 0.964 6.77
DB 9.7 300 Liquid 0.944 7.45
DZ 37.2 78 Liquid 0.585 3.61
EXP 30.7 96 Liquid 0.908 5.98
EXP 33.2 96 Liquid 0.949 5.56
KABLJ 50.7 30 Glass 0.858 6.93
KABLJ 50.7 70 Liquid 0.946 5.75
KABLJ 50.7 240 Liquid 0.995 5.10
METH 31.5 150 Liquid 0.318 22.53
METH 31.5 600 Liquid 0.541 6.88
METH 31.5 2000 Liquid 0.861 5.51
MGCU 85.0 640 Liquid 0.797 4.74
MGCU 75.6 465 Liquid 0.622 6.73
OTP 4.65 300 Liquid 0.913 8.33
OTP 4.08 500 Liquid 0.884 8.78
OTP 3.95 500 Liquid 0.910 7.70
SPC/E 50.0 200 Liquid 0.016 208.2
SPC/E 55.5 300 Liquid 0.065 48.6
SQW 60.8 48 Liquid −0.763 −50.28
SQW 60.8 79 Liquid −0.833 −49.11
SQW 60.8 120 Liquid −0.938 −52.02
SQW 59.3 120 Liquid −0.815 −30.07
TIP5P 55.92 273 Liquid −0.051 −2.47
TIP5P 55.94 285.5 Liquid 0.000 2.51
TOL 10.5 75 Glass 0.877 7.59
TOL 10.5 300 Liquid 0.961 8.27

FIG. 11. Illustration of the square-well potential, indicating the four micro-
scopic processes, which contribute to the virial.

FIG. 10. �Color online� W ,U-correlations for all simulated liquids;
��W�U� / �kBTV� plotted vs ����W�2����U�2��1/2 / �kBTV�. Both quantities
correspond to a pressure, which is given in units of GPa; for model systems
not specifically corresponding to real systems, such as SCLJ, KABLJ, and
SQW, argon units were used to set the energy and length scales. If the
correlation is perfect �R=1� the data fall on the diagonal marked by a dashed
line. For the TIP5P model of water only temperatures with R0 are in-
cluded; volumes were chosen to give a pressure close to zero.
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tential models attractive colloidal systems,12 one of whose
interesting features, predicted from simulations and theory, is
the existence of two different glass phases, termed the “re-
pulsive” and “attractive” glasses.29 The discontinuous poten-
tial not only makes the simulations substantially different
from a technical point of view, but there are also conceptual
differences—in particular, the instantaneous virial is a sum
of delta functions in time. The dynamical algorithm em-
ployed in the simulations is ED, where events involve a
change in the relative velocity of a pair of particles due to
hitting the hard-core inner wall of the potential or crossing
the potential step. The algorithm must detect the next event,
advance time by the appropriate amount, and adjust the ve-
locities of all particles appropriately. There are four kinds of
events �illustrated in Fig. 11�: �1� “collisions,” involving the
inner repulsive core; �2� “bounces,” involving bouncing off
the outer �attractive� wall of the potential; �3� “trapping,”
involving the separation going below the range of the outer
wall; and �4� “escapes,” involving the separation increasing
beyond the outer wall. To obtain meaningful values of the
virial a certain amount of time averaging must be done—we
can no longer consider truly instantaneous quantities. As
shown in Appendix C the time-averaged virial may be writ-
ten as the following sum over all events that take place in the
averaging interval tav:

W̄ =
1

3tav
�

events e

mr,ere · �ve. �17�

Here re and ve refer to the relative position and velocity for
the pair of particles participating in event e, while � indi-
cates the change taking place in that event. Positive contri-

butions to W̄ come from collisions; the three other event
types involve the outer wall, which, as is easy to see, always
gives a negative contribution. The default tav in the simula-
tion was 0.05. Strong correlations emerge only at longer av-
eraging times, however. An appropriate tav may be chosen by
considering the correlation functions �auto- and cross-� for
virial and potential energy, plotted in Fig. 12, where the “in-
stantaneous” values E�t� and W�t� correspond to averaging

over 0.05 time units. We choose tav��� /10, where �� is the
relaxation time determined from the cross-correlation func-
tion ��U�0��W�t��. Data for a few state points are shown in
Table II. Remarkably, this system, so different from the con-
tinuous potential systems, also exhibits strong
W ,U-correlations, with R=0.94 in the case T=1.0, �
=0.595 �something already hinted at in Fig. 12 in the fact
that the curves coincide�. There is a notable difference, how-
ever, compared to continuous systems: The correlation is
negative.

The reason for the negative correlation is that at high
density, most of the contributions to the virial are from col-
lisions: A particle will collide with neighbor 1, recoil, and
then collide with neighbor 2 before there is a chance to make
a bounce event involving neighbor 1. The number of colli-
sions that occur in a given time interval is proportional to the
number of bound pairs that is exactly anticorrelated with the
energy. The effective slope � has a large �negative� value of
order −50, which does not seem to depend strongly on tem-
perature. This example is interesting because it shows that
strong pressure-energy correlations can appear in a wider
range of systems that might first have been guessed. Note,
however, that the ordinary hard-sphere system cannot display
such correlations, since potential energy does not exist as a
dynamical variable in this system, i.e., it is identically zero.
The idea of correlations emerging when quantities are aver-
aged over a suitable time interval is one we shall meet again
in Paper II in the context of viscous liquids.

IV. SUMMARY

We have demonstrated a class of model liquids whose
equilibrium thermal fluctuations of virial and potential en-
ergy are strongly correlated. We have presented detailed in-
vestigations of the presence or absence of such correlations
in various liquids, with extra detail presented for the standard
SCLJ case. One notable aspect is how widespread these cor-
relations are, appearing not just in Lennard-Jones potentials
or in potentials that closely resemble the Lennard-Jones one,
but also in systems involving many-body potentials �CU and
MGCU� and discontinuous potentials �SQW�. We have seen
how the presence of different types of terms in the potential,
such as Lennard-Jones and Coulomb interactions, spoil the
correlations, even though each by itself would give rise to a
strongly correlating system. Most simulations were carried
out in the NVT ensemble; R is not ensemble independent, but
the R→1 limit is.

Several of the hydrocarbon liquids studied here were
simulated using simplified “united-atom” models where
groups such as methyl groups or even benzene rings were
represented by Lennard-Jones spheres. These could also be
studied using more realistic “all-atom” models, where every
atom �including hydrogen atoms� is included. It would be
worth investigating whether the strength of the correlations
is reduced by the associated Coulomb terms in such cases.

In Paper II we provide a detailed analysis for the SCLJ
case, including consideration of contributions beyond the ef-
fective inverse power-law approximation and the T→0 limit
of the crystal. There we also discuss some consequences,

FIG. 12. �Color online� Energy-energy, virial-virial, and energy-virial cor-
relation functions for SQW at packing fraction �=0.595 and temperature
T=1.0 �normalized to unity at t=0�. The cross correlation has been multi-
plied by −1. The arrow marks the time t=8, roughly 1 /10 of the relaxation
time �determined from the long-time part of the energy-virial cross-
correlation function�. This time was used for averaging.
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including a direct experimental verification of the correla-
tions for supercritical argon and consequences of strong
pressure-energy correlations in highly viscous liquids and
biomembranes.
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APPENDIX A: DETAILS OF INTERATOMIC
POTENTIALS

Here we give more detailed information about the inter-
atomic potentials used. These details have been published
elsewhere as indicated, except for the case of EXP and TOL.

CU: Pure liquid Cu simulated using the many-body po-
tential derived from EMT.17,18 This is similar to the embed-
ded atom method of Daw and Baskes,30 where the energy of
a given atom i, Ei, is some nonlinear function �the “embed-
ding function”� of the electron density due to the neighboring
atoms. In the EMT, it is given as the energy of an atom in an
equivalent reference system, the “effective medium,” plus a
correction term, Ei=EC,i�ni�+ 1

2 �� j�ivij�rij�−� j�i
ref vij�rij��.

Specifically, the reference system is chosen as a fcc crystal of
the given kind of atom, and “equivalent” means that the elec-
tron density is used to choose the lattice constant of the crys-
tal. The correction term is an ordinary pair potential involv-
ing a simple exponential, but notice that the corresponding
sum in the reference system is subtracted �guaranteeing that
the correct reference energy is given when the configuration
is in fact, the reference configuration�. The parameters were
E0=−3.510 eV, s0=1.413 Å, V0=2.476 eV, �2=3.122 Å−1,
�=5.178, �=3.602, and n0=0.0614 Å−3.

DB: Asymmetric dumbbell molecules,19 consisting of
two unlike Lennard-Jones spheres, labelled P and M, con-
nected by a rigid bond. The parameters were 
p

=5.726 kJ /mol, �p=0.4963 nm, mp=77.106 u, 
m

=0.66944 kJ /mol, �m=0.3910 nm, and mm=15.035 u; the
bond length was d=0.29 nm. Cross interactions, 
pm and
�pm, were set equal to the geometric and arithmetic means of
the p and m parameters, respectively �Lorentz–Berthelot
mixing rule31�.

DZ: A monatomic liquid introduced by Dzugutov as a
candidate for a monatomic glass-forming system.20 The po-
tential is a sum of two parts, v�r�=v1�r�+v2�r�, with v1�r�
=A�r−m−B�exp�c / �r−a�� for r�a and zero otherwise, and
v2�r�=B exp�d / �r−b�� for r�b, zero otherwise. The param-
eters are chosen to match the location and curvature of the
Lennard-Jones potential: m=16, A=5.82, c=1.1, a=1.87, B
=1.28, d=0.27, and b=1.94.

EXP: A system interacting with a pair potential
with exponential repulsion U�r�= �
 /8��6 exp�−14�r /�−1��
−14�� /r�6�. Note that the attractive term has the same form
as the Lennard-Jones potential.

KABLJ: The Kob–Andersen binary Lennard-Jones
liquid,21 a mixture of two kinds of particles A and B, with A
making 80% of the total number. The energy and length pa-

rameters are 
AA=1.0, 
BB=0.5, 
AB=1.5, �AA=1.0, �BB

=0.88, and �AB=0.8. The masses are both equal to unity. We
use the standard density �=1.2�AA

−3 .
METH: The GROMOS three-site model for methanol.32

The sites represent the methyl �M �CH3� group �m
=15.035 u�, the O atom �m=15.999 u�, and the O-bonded H
atom �m=1.008 u�. The charges for Coulomb interactions
are, respectively, 0.176e, −0.574e, and 0.398e. The M and O
groups additionally interact via Lennard-Jones forces, with
parameters 
MM =0.9444 kJ /mol, 
OO=0.8496 kJ /mol, 
MO

=0.9770 kJ /mol, �MM =0.3646 nm, �OO=0.2955 nm, and
�MO=0.3235 nm. Lennard-Jones interactions are smoothly
cutoff between 0.9 and 1.1 nm. The M –O and O–H dis-
tances are fixed at 0.136 and 0.1 nm, respectively, while the
M –O–H bond angle is fixed at 108.53°.

MGCU: A model of the metallic alloy Mg85Cu15, simu-
lated by EMT with parameters as in Ref. 23. In this potential
there are seven parameters for each element. However, some
of the Cu parameters were allowed to vary from their origi-
nal values in the process of optimizing the potential for
the Mg–Cu system. The parameters for Cu were
E0=−3.510 eV, s0=1.413 Å, V0=1.994 eV, �2=3.040 Å−1,
�=4.944, �=3.694, and n0=0.0637 Å−3, while those for Mg
were E0=−1.487 eV, s0=1.766 Å, V0=2.230 eV, �2

=2.541 Å−1, �=4.435, �=3.293, and n0=0.0355 Å−3. It
should be noted that there is an error in Ref. 23: The param-
eter s0 for Cu is given in units of bohr instead of Å.

OTP: The Lewis–Wahnström three-site model of OTP
�Ref. 24� consisting of three identical Lennard-Jones spheres
located at the apices A, B, and C of an isosceles triangle.
Sides AB and BC are 0.4830 nm long, while the ABC angle
is 75°. The Lennard-Jones interaction parameters are 

=4.989 kJ /mol and �=0.483 nm, while the mass of each
sphere, not specified in Ref. 24, was taken as one-third of the
mass of an OTP molecule, m=76.768 u.

SCLJ: The standard single-component Lennard-Jones
system with potential given by Eq. �11�.

SPC/E: The SPC/E model of water,25 in which each mol-
ecule consists of three rigidly bonded point masses, with an
OH distance of 0.1 nm and the HOH angle equal to the tet-
rahedral angle. Charges on O and each H are equal to
−0.8476e and +0.4238e, respectively. O atoms interact with
each other via a Lennard-Jones potential with 

=2.601 kJ /mol and �=0.3166 nm.

SQW: A binary model with a pair interaction consisting
of an infinitely hard core and an attractive square well:12,26

vij�r�=	, r��ij, vij�r�=−u0, �ij �r��ij�1+
�, vij�r�=0,
and r�ij�1+
�. The radius parameters are �AA=1.2, �BB

=1, and �AB=1.1, while 
=0.03 and u0=1. The composition
was equimolar, and the masses of both particles were equal
to unity.

TIP5P: In this water model27 there are five sites associ-
ated with a single water molecule. One for the O atom, one
for each H, and two to locate the centers of negative charge
corresponding to the electron lone pairs on the O. The OH
bond length and the HOH bond angle are fixed at the gas-
phase experimental values rOH=0.09572 nm and �HOH

=104.52°. The negative charge sites are located symmetri-
cally along the lone-pair directions at distance rOL
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=0.07 nm and with an intervening angle �LOL=109.47°. A
charge of +0.241e is located on each hydrogen site, while
charges of equal magnitude and opposite sign are placed on
the lone-pair sites. O atoms on different molecules interact
via the Lennard-Jones potential with �O=0.312 nm and 
O

=0.669 kJ /mol.
TOL: A seven site united-atom model of toluene, con-

sisting of six “ring” C atoms and a methyl group �H atoms
are not explicitly represented�. In order to handle the con-
straints more easily, only three mass points were used; one at
the ring C attached to the methyl group �m=40.065 u�, and
one at each of the two “meta” C atoms �m=26.038� �note
that with this mass distribution, the moment of inertia is not
reproduced correctly�. Parameters were derived from the in-
formation in Ref. 33: 
ring=0.4602 kJ /mol, 
methyl

=0.6694 kJ /mol, �ring=0.375 nm, and �methyl=0.391 nm.
The Lorentz–Berthelot rule was used for cross interactions.33

APPENDIX B: CONNECTING FLUCTUATIONS
TO THERMODYNAMIC DERIVATIVES

If A is a dynamical quantity that depends only on the
configurational degrees of freedom, then its average in the
canonical ensemble �NVT� is given by �where, for conve-
nience, we use a discrete-state notation, with Ai referring to
the value of A in the ith microstate, etc.�

�A� =
�iAi exp�− �Ui�
�i exp�− �Ui�

=
�iAi exp�− �Ui�

Q
, �B1�

where �=1 /kBT and Q is the configurational partition func-
tion. Then the inverse temperature derivative of �A� can be
written in terms of equilibrium fluctuations as follows:

� ��A�
��


V

= −
�iAi exp�− �Ui�Ui

Q

+
�iAi exp�− �Ui�� j exp�− �Uj�Uj

Q2 �B2�

=− ��AU� − �A��U�� �B3�

=− ��A�U� . �B4�

Now taking A=W and A=U successively we find that

� ��W�
�T


V
�� ��U�

�T


V
= � ��W�

��


V
�� ��U�

��


V

=
��W�U�
���U�2�

. �B5�

This last expression is precisely the formula for the slope
obtained by linear regression when plotting W against U.

Consider now volume derivatives. Because volume de-
pendence comes in through the microstate values, Ai and Ui,
and the volume derivatives of these are not necessarily re-

lated in a simple way, the corresponding expression is not as
simple: The derivative of �W� with respect to volume at fixed
temperature is given by

� ��W�
�V


T

=
�

�V
��p�V − NkBT�T �B6�

=�p� + V� ��p�
�V


T

= �p� − KT, �B7�

where KT is the isothermal bulk modulus. The derivative of
U can be obtained by writing pressure as the derivative of
Helmholtz free energy F �K is kinetic energy� as follows:

�p� = − � �F

�V


T
= − � ���U� + �K� − TS�

�V


T
�B8�

=− � ��U�
�V


T

+ T� �S

�V


T
. �B9�

Then using the thermodynamic identity ��S /�V�T

= ���p� /�T�V��V, we obtain the ratio of volume derivatives
of �W� and �U� as follows:

� ��W�
�V


T
�� ��U�

�V


T
= −

KT − �p�
T�V − �p�

, �B10�

which becomes −KT / �T�V� when the pressure is small com-
pared to the bulk modulus. As discussed in Paper II, �V can
be expressed in terms of ��U�W� again, but the fluctuation
expression for KT is more complicated. Thus we cannot sim-
ply identify the lines of constant T, varying V, on a �W�,
�U�-plot, as we could with lines of fixed V, varying T, by
examining the fluctuations at fixed V ,T.

APPENDIX C: VIRIAL FOR SQUARE-WELL SYSTEM

Here we derive the expression for the time-averaged
virial, Eq. �17�, as a convenience for the reader. The idea is
to replace the step u0 in the potential with a finite slope u0 /�
over a range �, and take the limit �→0. We start by replac-
ing a two-body interaction in three dimensions with the
equivalent one-dimensional, one-body problem using the ra-
dial separation r and the reduced mass mr. Let the potential
step be at r=rs and define x=r−rs �see Fig. 13�. We consider
an “escape event” over a positive step, so that an initial �rela-
tive� velocity v0 becomes a final velocity v1 and r goes from
a value less than r0 to a value greater than r0+�. The result-
ing formula also applies for the other kinds of events.

FIG. 13. Illustration of replacement of discontinuous step by a finite slope
for the square-well potential for the purpose of calculating the virial. The
limit �→0 is taken at the end.
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The contribution to the time integral of the virial from
this event is given by

� = 

0

t� �r0 + x�
3

Fdt = − 

0

t� �r0 + x�u0

3�
dt , �C1�

where F is the �constant� force in the region 0�x�� and t�

is the time taken for the “particle” �the radial separation� to
cross this region. The trajectory x�t� is given by the standard
formula for uniform acceleration

x�t� = v0t −
1

2

u0

�mr
t2, �C2�

which by setting x�t��=� gives the following expression for
t�:

t� = ��mrv0

u0
−	�mrv0

u0
2

−
2mr

u0
; �C3�

here we have taken the negative root, appropriate for a posi-
tive u0 �we want the smallest positive t��. Returning to �, it
can be split into two parts as follows:

� = − 

0

t� r0u0

3�
dt − 


0

t� x�t�u0

3�
dt . �C4�

Consider the second term: Using the expression for x�t�
from Eq. �C2�, we see that the result of the integral will
involve a term proportional to t�

2 and one proportional to t�
3.

Using Eq. �C3� to replace t���, and noting the � in the
denominator, the terms will have linear and quadratic depen-
dences on �, respectively. Thus they will vanish in the limit
�→0. On the other hand, the first term gives

� = −
r0u0

3�
t� = −

r0u0

3
�mrv0

u0
−	�mrv0

u0
2

−
2mr

u0


=
r0mr

3
�	v0

2 − 2u0/mr − v0� . �C5�

This expression can be simplified by writing it in terms
of the change of velocity �v�v1−v0. In the one-body prob-
lem conservation of momentum does not hold, and v1 is
given by energy conservation

1
2mrv0

2 = 1
2mrv1

2 + u0, �C6�

from which �v is obtained as

�v � v1 − v0 = 	v0
2 − 2u0/mr − v0; �C7�

thus, the expression for � becomes

� =
r0mr

3
�v =

mr

3
r · �v , �C8�

where in the last expression a switch to three-dimensional
notation was made, recognizing that for central potentials �v
will be parallel to the displacement vector between the two
particles. This expression, derived for escape events, must
also hold for capture events since these are time-reverses of
each other, and the virial is fundamentally a configurational
quantity, independent of dynamics �the above expression is
time-reversal invariant because the change in the radial com-

ponent of velocity is the same either way, since although the
“initial” and “final” velocities are swapped, they also have
opposite sign�. Bounce and collision events may be treated
by dividing the event into two parts at the turning point
�where the relative velocity is zero�, noting that each may be
treated exactly as above, then adding the results back to-
gether. If we now consider all events that take place during
an averaging time tav�, we get the time-averaged virial as

W̄ =
1

3tav
�

events e

mr,ere · �ve. �C9�
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Pressure-energy correlations in liquids. II. Analysis and consequences
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We present a detailed analysis and discuss consequences of the strong correlations of the
configurational parts of pressure and energy in their equilibrium fluctuations at fixed volume
reported for simulations of several liquids in the previous paper �N. P. Bailey et al., J. Chem. Phys.
129, 184507 �2008��. The analysis concentrates specifically on the single-component Lennard-Jones
system. We demonstrate that the potential may be replaced, at fixed volume, by an effective power
law but not simply because only short-distance encounters dominate the fluctuations. Indeed,
contributions to the fluctuations are associated with the whole first peak of the radial distribution
function, as we demonstrate by an eigenvector analysis of the spatially resolved covariance matrix.
The reason the effective power law works so well depends crucially on going beyond single-pair
effects and on the constraint of fixed volume. In particular, a better approximation to the potential
includes a linear term, which contributes to the mean values of potential energy and virial, but little
to their fluctuations, for density fluctuations which conserve volume. We also study in detail the zero
temperature limit of the �classical� crystalline phase, where the correlation coefficient becomes very
close, but not equal, to unity, in more than one dimension; in one dimension the limiting value is
exactly unity. In the second half of the paper we consider four consequences of strong
pressure-energy correlations: �1� analyzing experimental data for supercritical argon we find 96%
correlation; �2� we discuss the particular significance acquired by the correlations for viscous van
der Waals liquids approaching the glass transition: For strongly correlating viscous liquids
knowledge of just one of the eight frequency-dependent thermoviscoelastic response functions
basically implies knowledge of them all; �3� we reinterpret aging simulations of ortho-terphenyl
carried out by Mossa et al. �Eur. Phys. J. B 30, 351 �2002��, showing their conclusions follow from
the strongly correlating property; and �4� we briefly discuss the presence of the correlations �after
appropriate time averaging� in model biomembranes, showing that significant correlations may be
present even in quite complex systems. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2982249�

I. INTRODUCTION

In the companion paper1 to this work, referred to as Pa-
per I, we detailed the existence of a strong correlation be-
tween the equilibrium fluctuations of the configurational
parts of pressure and energy in several model liquids. Recall
that �instantaneous� pressure p and energy E have contribu-
tions both from particle momenta and positions,2

p = NkBT�p1, . . . ,pN�/V + W�r1, . . . ,rN�/V , �1�

E = K�p1, . . . ,pN� + U�r1, . . . ,rN� , �2�

where K and U are the kinetic and potential energies, respec-
tively, and T�p1 , . . . ,pN� is the “kinetic temperature,”2 pro-
portional to the kinetic energy per particle. The configura-
tional contribution to pressure is the virial W, which for a
translationally invariant potential-energy function U is
defined2 by

W = −
1

3�
i

ri · �ri
U , �3�

where ri is the position of the ith particle. Note that W has
dimension energy. In the case of a pair potential Upair

=�i�jv�rij�, the expression for the virial becomes2

Wpair = −
1

3�
i�j

rijv��rij� = −
1

3�
i�j

w�rij� , �4�

where w�r��rv��r�.
It is the correlation between U and W that we are inter-

ested in, quantified by the correlation coefficient

R =
��W�U�

	���W�2�	���U�2�
. �5�

Paper I documented the correlation in many systems, show-
ing that this is often quite strong, with correlation coefficient
R�0.9, while in some other cases it was found to be weak or
almost nonexistent. The latter included in particular models
with additional significant Coulombic interactions. The pur-
pose of this paper is twofold. First we give a comprehensivea�Electronic mail: nbailey@ruc.dk.
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analysis of the source of the correlation in the simplest
“strongly correlating” model liquid, the standard single-
component Lennard-Jones �SCLJ� fluid. Paper I presented
briefly an explanation in terms of an effective inverse power-
law potential. Here we elaborate on that in greater detail and
go beyond it. Second we discuss a few observable conse-
quences and applications of the strong correlations. These
range from their measurement in a real system to applica-
tions to systems as diverse as supercooled liquids and
biomembranes.

In Sec. II we present a detailed analysis for the SCLJ
case, first in terms of an effective inverse power law with
exponent 
18. This accounts for the correlation at the level
of individual pair encounters by assuming that only the re-
pulsive part of the potential, corresponding to distances less
than the minimum of the potential rm, is relevant for fluctua-
tions, and that this may be well approximated by an inverse
power law. The value 18 is significant since this explains the
“slope” � defined as

� �	���W�2�
���U�2�

, �6�

observed to be 
6 for Lennard-Jones systems �Paper I�. The
slope is exactly n /3 for a pure inverse power-law potential
with exponent n, a case with perfect W ,U correlation �Paper
I�. Section II continues with a discussion of the SCLJ crystal,
which is also strongly correlating. This would seem to invali-
date the dominance of the repulsive part since only presum-
ably distances around and beyond the potential minimum are
important, at least at low and moderate pressure. In this case
the correlation can be explained only when summation over
all pairs is taken into account, thus the correlation emerges as
a collective effect. There is a connection between the slope
obtained in this way and that given by the effective inverse
power law, in fact, they are quite similar. The third subsec-
tion in Sec. II gives a more systematic analysis of which
regions dominate the fluctuations in the liquid phase using an
eigenvector decomposition of the spatially resolved covari-
ance matrix. This matrix represents the contributions to the
�co-�variances of potential energy and virial from different
pair separations. It is demonstrated that the region around the
minimum of the potential plays a substantial role. The final
subsection in Sec. II provides a synthesis of the insights from
the previous subsections, resulting in an “extended effective
power-law approximation,” which includes a linear term.
The main point is that a linear term in the pair potential will
contribute to the mean values, but not to fluctuations, of W
and U, if the volume is constant.

In Sec. III we discuss some consequences, starting by
considering whether the instantaneous correlations can be re-
lated to a measurable quantity in the normal liquid state, and
demonstrating this with data for supercritical argon, finding a
correlation coefficient of 0.96. Next we focus on conse-
quences for highly viscous liquids, where time-scale separa-
tion implies that instantaneous correlation between virial and
potential energy can be related to a correlation between the
time-averaged pressure and energy. The third subsection dis-

cusses consequences for aging, while the fourth briefly dis-
cusses connections with recent work by Heimburg and Jack-
son on biomembranes.

Finally, Sec. IV concludes with an outlook reflecting on
the broader significance of strong correlation and its impli-
cations for the understanding of liquids, particularly in the
context of viscous liquids �which has been our main motiva-
tion throughout this work�.

II. ANALYSIS

A. The effective inverse power law

In this section we consider the SCLJ system in the hope
that it is simple enough that a fairly complete understanding
of the cause of strong correlations is possible. Recall that
R�0.9 for a wide range of states �Paper I�. In order to un-
derstand the numerology better we consider a generalized
Lennard-Jones potential, denoted by LJ�a ,b� �a�b�,

vLJ
a,b�r� � ��/r�a − ��/r�b, �7�

although the standard LJ�12,6� case will be used for most
examples. Starting from the idea that short distances domi-
nate fluctuations and that the observed correlations are sug-
gestive of a power-law interaction, we show that at a given
density, the LJ potential may be approximated by a single
effective inverse power law over a range from a little less
than � �where vLJ changes sign� to around rm, the location of
the potential minimum �rm=21/6� for LJ�12,6��, covering an
energy range of approximately −� to +2�, where � is the
well-depth. At first sight, one might expect that if this were at
all the case, the effective power would be less than a, some-
how a mixture of the two exponents a and b. It was noticed
by Ben-Amotz and Stell,3 however, that the repulsive core of
the LJ�12,6� potential may approximated by an inverse
power law with an exponent of 
18, in agreement with our
data �Paper I�. To see how we get an exponent greater than a,
note that the exponent n in an inverse power law can be
extracted from different ratios of derivatives,

vPL�r� = Ar−n + B , �8�

where B is a constant. This implies that

n =
− rvPL� �r�

�vPL�r� − B�
=

− rvPL� �r�
vPL� �r�

− 1 =
− rvPL� �r�

vPL� �r�
− 2 = ¯

�9�

since successive differentiation gives factors of n, then n+1,
etc. For a potential v�r�, which is not an inverse power law,
these expressions provide different definitions of a local ef-
fective power-law exponent �assuming v�r�→0 as r→��,

n�0��r� � − rv��r�/v�r� ,

n�1��r� � − rv��r�/v��r� − 1,

�10�
n�2��r� � − rv��r�/v��r� − 2,

n�p��r� � − rv�p+1��r�/v�p��r� − p .
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A plot of the first four of these is shown in Fig. 1 for
LJ�12,6�. All converge to a=12 at short r, as they must. All
increase with increasing r until the denominator vanishes,
but more slowly, the higher the order p. In particular, when
n�p� diverges it is straightforward algebra to show that n�p+1�

has the value a+b+ p. So n�0� diverges at r=� where the
potential is zero, and is therefore unsuitable for characteriz-
ing the range which we expect to dominate the fluctuations,
from energy +� to energy −� �it is also sensitive to the pres-
ence of an additive constant, unlike the others�. Instead we
use n�1�, which at r=� �the zero of v and the divergence of
n�0�� takes the value a+b, or 18 for the LJ�12,6�. Taking the
factor 3 in the denominator of the virial into account, this
would explain the slope 
6 observed in the simulations �Pa-
per I�. However first we should see how well an inverse
power law with this exponent actually fits the LJ potential.
We denote the point matching point r0. With the exponent
fixed, we are free to choose the multiplicative constant A and
the additive one B to match the slope and value at r=�=r0;
the resulting expression is �4 /3���r /��−18−1�. This is plotted
in Fig. 2�a� along with vLJ. We can match at different values
of r by finding the expression for n�1��r� for the generalized
LJ potential,

n�1��r� = b +
a − b

1 − �b/a��r/��a−b , �11�

which becomes 6+12 / �2− �r /��6� for LJ�12,6�.4

The fact that we can choose a function �an inverse power
law in this case� to match a given function and its first two
derivatives is nothing special by itself; after all, a Taylor
series does the same. Examples of matching power laws and
Taylor series up to fourth order, at different values of r0, are
shown in Fig. 2�b�, where the errors vLJ�r�−vPL�r� or
vLJ�r�−vTaylor�r� are plotted. The magnitude of the errors are
similar in the range of r shown but note that in Taylor series
it was necessary to match third derivatives at r0 to achieve

this, so the inverse power-law description is more compact.
Moreover the power-law representation is much more useful
when it comes to representing the fluctuations of total energy
and virial because an inverse power law �and therefore the
error� flattens out at a constant value at larger r, whereas the
polynomial nature of the Taylor expansion means that away
from the point of expansion, the error diverges rapidly
�Fig. 2�a��.

We can test the validity of the power-law approximation
for representing fluctuations in W and U as follows. For the
purpose of computing the energy and virial of a configura-
tion due to a pair interaction, all necessary information is
contained in the instantaneous radial distribution function
�RDF� �Ref. 2�

g�r,t� �
2

N	
�
i�j


�r − rij�t��/�4�r2� , �12�

where 	=N /V with N and V being the number of particles
and the system volume, respectively. From this U and W may
be computed as

FIG. 1. Effective power-law exponents defined by derivative ratios of dif-
ferent orders �Eqs. �10�� for the standard Lennard-Jones potential LJ�12,6�.
All converge to 12 at small r; they diverge when the derivative in the
denominator vanishes, which happens for larger r, the higher the order of
this derivative. The term “effective inverse power law” in this paper refers to
a power law chosen to match n�1� at some point r0�rm
1.12�, the potential
minimum where n�1� diverges. A convenient choice is to match at r=�,
giving 18. In Secs. II B and II C we show that n�2��r� plays an important role
in the understanding of fluctuations associated with pair distances close to
the potential minimum �rm
1.12��.

FIG. 2. �Color online� �a� The Lennard-Jones potential vLJ�r� fitted by an
effective power-law potential vPL�r�=Ar−n+B covering the most important
part of the repulsive part of the potential. The exponent n was chosen to be
18, which optimizes agreement at r0=�, where the effective power law
exactly matches not just vLJ but also its first two derivatives. Also shown are
the Taylor series expansions of vLJ�r� about r=rm up to third and fourth
orders. The RDF g�r�−1 �at T=80 K,p=0� is also shown as a convenient
reference for thinking about where contributions to potential energy and
virial fluctuations come from. �b� Error made in approximating vLJ�r� with
different effective power laws matched at different points r0 and with Taylor
expansions up to third order about the same point.
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ULJ�t� =
N

2
	�

0

�

dr4�r2g�r,t�vLJ�r� , �13�

WLJ�t� = −
N

6
	�

0

�

dr4�r2g�r,t�wLJ�r� . �14�

Now, ULJ�t� is rewritten as an inverse power-law potential
plus a difference term, ULJ�t�=UPL�t�+Udiff�t�, where

UPL�t� =
N

2
	�

0

�

dr4�r2g�r,t�vPL�r� , �15�

Udiff�t� =
N

2
	�

0

�

dr4�r2g�r,t��vLJ�r� − vPL�r�� , �16�

and similarly WLJ�t�=WPL�t�+Wdiff�t�. We do not include the
additive constant with the power-law approximation; for
practical reasons the potential function should be close to
zero at a cutoff distance rc �adding a constant to vPL would
only add an overall constant to UPL�. We refer to UPL�t� and
WPL�t� as “reconstructed” potential energy and virial, respec-
tively, to emphasize that the configurations are drawn from a
simulation using the LJ potential, but these quantities are
calculated using the inverse power law. In Fig. 3, we show a
scatter plot of the true and reconstructed values of U and W
for the same state point �p=0, T=80 K� as was shown in
Figs. 1 and 2�a� of Paper I. Here the inverse power-law ex-
ponent was chosen to minimize the variances of the differ-
ence quantities ���Udiff�2� and ���Wdiff�2�. These are mini-
mized for n=19.3 and 19.1, respectively, so we choose the
value 19.2, which corresponds to matching the potentials at
the distance of 1.015�. Note that what are actually plotted
are the deviations from the respective mean values—the
means �ULJ� and �UPL�, for example, do not coincide. How-
ever the fluctuations are clearly highly correlated, and the
data lie quite close to the blue dashed lines, marking slope
unity. Specifically, the correlation coefficients are 0.946 for
the potential energy and 0.984 for the virial. We can also

check how much of the variance of ULJ is accounted for by
UPL, ���UPL�2� / ���ULJ�2�, and similarly for W. This is a sen-
sible quantity because the “PL” and “diff” parts are almost
uncorrelated for the choice n=19.2 �cross terms account for
less than 1% of the total variance in each case�. We find 92%
for U and 95% for W. Thus we see that the power law gives
to a quite good approximation the fluctuations of W and U.
The correlation follows from this with � given by one-third
of the effective inverse power-law exponent, or 6.4 for this
state point. The measured slope �Eq. �6�� was 6.3, corre-
sponding to an effective exponent of 18.9, about 2% smaller
than the 19.3. A simpler way to determine the exponent
would be three times the slope, although for some applica-
tions it could be advantageous to optimize the fit as de-
scribed here.

B. Low-temperature limit: Anharmonic vibrations
of a crystal

We turn our attention now to the fact that the correlation
persists even for the crystallized samples �seen in Paper I in
the lower left part of Fig. 4 and in Fig. 6�. This is not trivial
because the physics of solids, both crystalline and amor-
phous systems, is generally dominated by fluctuations about
mechanically stable structures, and therefore presumably
�except perhaps at very high pressure� by the form of the
potential near its minimum rm, i.e., including distances larger
than the minimum. Thus the idea of the effective inverse
power law would seem to be inappropriate here, in particular,
since the effective exponent n�1� diverges at rm—and there is
apparently no reason why one should get a correlation as
strong as in the liquid and with so similar a slope. In fact,
there is an interval of r between rm and the minimum of the
pair virial −w�r� /3 where v�r� increases and −w�r� /3 de-
creases, which would lead, if anything, to a negative corre-
lation between W and U, when considering individual pair
interactions. Moreover, one would expect that a harmonic
approximation of the potential near the ground-state configu-
ration would be an accurate representation of the dynamics
in the low-temperature limit, but as we will see, the har-
monic approximation actually implies negative W, U corre-
lation, which is not observed. In this subsection we show
why the strong positive correlation persists, and why the
slope � changes little going from liquid to crystal �at con-
stant volume�. Although the classical dynamics of a crystal is
apparently of little importance, since in reality quantum ef-
fects dominate, it turns out to be very instructive to consider
the low-temperature �T→0� classical limit since what we
find has significance also in the liquid phase �Sec. II C�. The
key ideas are �1� that the positive correlation emerges only
after summing over all interactions—it is therefore a collec-
tive effect rather than a single-pair effect, and �2� the con-
straint of fixed volume—it is important to recall from Paper
I that the virial-potential-energy correlation only appears un-
der fixed-volume conditions; different volumes give approxi-
mately the same slope but different offsets �Fig. 4 in Paper I�.

FIG. 3. �Color online� Scatter plot of true and reconstructed potential energy
and virial fluctuations �dimensionless units� for the LJ liquid, where the
reconstructed values UPL and WPL were calculated from the true configura-
tions, assuming an inverse power-law potential with exponent of 19.2; mean
values have been subtracted off. The state point is the same as in Fig. 1 of
Paper I �zero average pressure, NVT ensemble�. The correlation coefficients
are displayed in the figures; the dashed lines indicate slope unity. The fact
that actual and reconstructed fluctuations correlate strongly, and with slopes
close to unity, support the idea that the W ,U correlation is derived from an
effective inverse power-law potential dominating fluctuations.
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1. The one-dimensional crystal

For maximum clarity we start by considering the sim-
plest possible case, a one-dimensional �1D� crystal with pe-
riodic boundary conditions and only nearest-neighbor inter-
actions. We also suppose that the lattice spacing ac is equal
to the minimum of the potential; this assumption is not made
in the subsequent treatment of the three-dimensional �3D�
crystal. In a crystal the particles stay close to their equilib-
rium positions. It therefore makes sense to expand the pair
energy �we have in mind a general pair potential with a
single minimum� as a Taylor series, leaving out constant
terms but keeping third order terms,

U = �
i
�1

2
k2�ri,i+1 − rm�2 +

1

6
k3�ri,i+1 − rm�3

�
1

2
k2S2 +

1

6
k3S3, �17�

where ri,i+1 is the distance between particles i and i+1, kp is
the pth derivative of the pair potential at r=rm, and we in-
troduce the notation

Sp � �i�ri,i+1 − rm�p.

The virial is

W = −
1

3�
i
�k2ri,i+1�ri,i+1 − rm� +

k3ri,i+1

2
�ri,i+1 + rm�2 ,

�18�

which, by writing ri,i+1=rm+ �ri,i+1−rm�, can be rewritten as

W = −
1

3
�k2rmS1 + k2S2 +

k3rm

2
S2 +

k3

2
S3 . �19�

Note that U involves S2 and S3 while W also has a first-order
term with S1. Evaluating the sum S1 is very simple: ri,i+1 can
be expressed in terms of displacements from the equilibrium
positions ui as ri,i+1=rm+ui+1−ui, giving for S1

S1 = �
i

�ui+1 − ui� . �20�

Such a sum of consecutive relative displacements gives the
change in separation of the two end particles. However the
total sum must vanish because by periodic boundary condi-
tions the “end particles” are the same particle �it does not
matter which one�, therefore S1=0. In fact, periodic bound-
ary conditions are not necessary, only that the length is fixed.
Since both U and W involve at lowest order S2, which is
positive semidefinite, at sufficiently low temperature we may
drop the S3 terms. Combining Eqs. �17� and �19� we find

W = −
1

3

k2 + k3rm/2
k2/2

U =
n�2��rm�

3
U , �21�

where we have written the coefficient in terms of the p=2
effective power-law exponent defined in Eq. �10�. For LJ�a,
b� the coefficient evaluates to �a+b+1� /3, which is 6.33 for
LJ�12,6�, similar to the observed slope. This short calculation
demonstrates the main point: summing over all interactions
makes the first-order term in the virial vanish, and the

second-order term is proportional to the second-order term in
the potential energy. It is also worth noting that for a purely
harmonic crystal we can take k3=0, in which case Eq. �21�
implies that there is perfect negative correlation, with a slope
of −2 /3.

2. The three-dimensional crystal

We now generalize this to 3D crystals, which means al-
lowing for transverse displacements. The calculation in-
volves breaking overall sums into sums over 1D chains
within the crystal. We also relax the condition that the lattice
constant coincides with the potential minimum, which is
only realistic at low pressures. We still assume only nearest-
neighbor interactions are relevant �this will be justified in the
next subsection�. Generalization to a disordered �amorphous�
solid5 should be possible, since we observe the correlation to
hold also in that case. The calculation would necessitate,
however, some kind of disorder averaging, which is beyond
the scope of this paper.6

We start by considering a simple cubic �sc� crystal of
lattice constant ac, with interactions only between nearest
neighbors, so that the equilibrium bond length is ac for all
bonds. The fact that such a crystal is mechanically unstable
is irrelevant for the calculation. We shall see later that the
result applies also to, for instance, a face-centered-cubic �fcc�
crystal. We have the same kind of expansions about r=ac as
above for U and W, except a linear term is now included
since we no longer assume that ac=rm. An index b is used to
represent nearest-neighbor bonds, and as for the 1D case, we
define

Sp � �
b

�rb − ac�p. �22�

We then have for U and W

U = �
p=1

�
kp

p! �
bonds b

�rb − ac�p = �
p=1

�
kp

p!
Sp, �23�

3W = �
p=1

�

−
kp

�p − 1�! �
bonds b

rb�rb − ac�p−1

= − �
p=1

�
kpac

�p − 1�!
Sp−1 − �

p=1

�
kp

�p − 1�!
Sp

= − k1acS0 − �
p=1

� � kp

�p − 1�!
+

kp+1ac

p!
Sp, �24�

where kp is the pth derivative of the pair potential at r=ac. It
is convenient to define coefficients Cp

U and Cp
W of the dimen-

sionless quantities Sp /ac
p,

Cp
U �

kpac
p

p!
, �25�

Cp
W � − � kpac

p

�p − 1�!
+

kp+1ac
p+1

p!
 . �26�

Dropping the constant term −k1acS0 in W, since it plays no
role for the fluctuations, we then have
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U = �
p=1

�

Cp
USp

ac
p , �27�

3W = �
p=1

�

Cp
WSp

ac
p . �28�

The ratio of the corresponding coefficients is given by the
pth order effective inverse power-law exponent,

Cp
W/Cp

U = − �p +
kp+1ac

kp
 = n�p��ac� . �29�

Thus for in the limit of small ac, where these are all similar
and close to the repulsive exponent in the potential �Fig. 1�,
the two expansions will be proportional to each other to an
infinite order. Also worth noting for later use is that the Cp’s
in each series increase with p. For example,

C2
U/C1

U =
k2ac

2k1
= −

1

2
�n�1��ac� + 1� , �30�

C2
W/C1

W =
k2ac + k3ac

2/2
k1 + k2ac

= −
1

2
�n�1��ac� + 1�

n�2��ac�
n�1��ac�

. �31�

For ac between � and rm, for LJ�12,6�, the absolute values of
these ratios lie in the intervals 9.5–� and 6.7–9.5,
respectively.

From dimensional considerations the variance of Sp is
proportional to N�u

2p, where �u
2�T is the variance of single-

particle displacements. At low T, therefore, we expect the S1

terms to dominate, which causes a problem since k1 changes
its sign at rm, corresponding to the divergence of n�1�. In 1D
this was avoided by the exact vanishing of S1. In 3D S1 does
not vanish exactly but retains terms second order in displace-
ments, and so contributes similarly to S2. It turns out �see
below� that S1 and S2 /ac have similar variances and signifi-
cant positive correlation, but in view of Eqs. �30� and �31�
this is not even necessary for a strong W, U correlation—the
coefficients of the S1 are relatively small so that it is still the
S2 terms that dominate. That is essentially the explanation of
the strong correlations in the crystal, but we now continue
the analysis in more detail in order to investigate how good it
becomes in the limit T→0. These general considerations will
be of use again in the following subsection, where we make
a similar expansion of the fluctuations in the liquid state.

We need to evaluate S1 and S2 in terms of the relative
displacements ub of the pair of particles involved in bond b.7

We keep only terms up to second order in displacements
since we are interested in the limit of low temperatures, so all
S3 terms in the expansion are dropped. In a sc crystal, all
nearest-neighbor bonds are parallel to one of the coordinate
�crystal� axes. Consider all bonds along the x-axis. These
may be grouped into rows of collinear bonds. The sum along
a single row is almost analogous to the 1D case except
that the bond length rb now also involves transverse
displacements,

Sp
row = �

b,row
�rb − ac�p. �32�

We write rb explicitly in terms of the relative displacements
and expand the resulting square root, dropping terms of
higher order than the second in u,

rb − ac = ��ac + ub,x�2 + ub,y
2 + ub,z

2 �1/2 − ac

= ac�1 +
2ub,x

ac
+

ub,x
2

ac
2 +

ub,y
2 + ub,z

2

ac
2 1/2

− ac

= ac�1 +
1

2
�2ub,x

ac
+

ub,x
2 + ub,y

2 + ub,z
2

ac
2 

−
1

8
�2ub,x

ac
2 − ac

= ub,x +
ub,y

2 + ub,z
2

2ac
. �33�

Now, the sum over bonds in a given row of the parallel
displacements ub,x vanishes for the same reasons as in the 1D
case. However when we sum the contributions to S1 over the
row, there are also second-order terms coming from the
transverse displacements. Extending the sum to all bonds
parallel to the x-axis, we have part of S1, denoted as S1

x,

S1
x = �

b,x

ub,y
2 + ub,z

2

2ac
= �

b,x

�ub,��2

2ac
, �34�

where � indicates the component of the relative displace-
ment vector perpendicular to the bond direction. Writing it
this way allows us to easily include the bonds parallel to the
y- and z-axes, and the total S1 is given by

FIG. 4. �Color online� Plots of predicted W ,U correlation coefficient for
T→0 for a crystal of LJ�12,6� particles for different degrees of correlation
between the quantities S1ac and S2, and of low-temperature simulation data.
The first three curves �counting from the bottom� assume that the variances
of S1ac and S2 are equal, and that their correlation coefficients RS are 0, 0.5,
and 0.75, respectively. The fourth curve �up triangles� results from consid-
ering an sc lattice and assuming individual particles have uncorrelated
Gaussian-distributed displacements, leading to specific values for the vari-
ances and covariance of S1ac and S2. The fifth �left triangles� shows the
same estimate for a fcc lattice. The right triangles are data from an NVT
simulation of a perfect fcc crystal at T=0.0002 K. The conclusion from this
figure is that R does not tend to unity as T→0, although it becomes ex-
tremely close. The inset shows the corresponding slopes � �Eq. �6��.
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S1 = �
b

�ub,��2

2ac
. �35�

Next we calculate S2 to second order in the relative displace-
ments ub. Starting with S2

x, the part containing only bonds in
the x-direction, using Eq. �33� we get

S2
x = �

b,x
ub,x

2 = �
b,x

�ub,��2, �36�

where � means the part of the relative displacement that is
parallel to the bond. Including all bonds,

S2 = �
b

�ub,��2. �37�

Now we can return to our expressions for the potential-
energy fluctuations �Eqs. �23� and �24��, keeping only terms
in S1 and S2,

�U = k1S1 +
k2

2
S2 =

k1

2ac
�

b

�ub,��2 +
k2

2 �
b

�ub,��2. �38�

Similarly, for the virial

3W = − k2acS1 −
k3ac

2
S2 − k1S1 − k2S2

= − � k1

2ac
+

k2

2
�

b

�ub,��2 − �k2 +
k3ac

2
�

b

�ub,��2.

�39�

3. Statistics of S1 and S2

It is clear that the � and � sums are not equal, although
they must be correlated to some extent. If written in terms of

single-particle displacements rather than relative displace-
ments for bonds, a term such as �ub,��2 for a bond in the
x-direction becomes

�uR+acî,x − uR,x�2 = uR+acî,x
2 + uR,x

2 − 2uR+acî,xuR,x, �40�

where R is a lattice vector used to index particles. Summing
over bonds gives

S2 = 2�
R

�uR�2 − 2 � �para. cross terms� , �41�

where the cross terms are products of the parallel compo-
nents of displacements on neighboring particles. For S1 we
have something similar,

S1ac = 2�
R

�uR�2 − 2 � �perp. cross terms� , �42�

where here the cross terms involve transverse components.
Since the term �R�uR�2 appears in both S1 and S2, these are
correlated to some extent, but not 100% since different cross
terms appear �note that if it were 100%, then W and U would
both be proportional to S2�S1 and also correlated 100%�.
Before considering as to what extent they are correlated, let
us see how much of a difference it makes. Suppose the quan-
tities S1ac and S2 have variances �1

2 and �2
2, respectively, and

are correlated with correlation coefficient RS. Using the co-
efficients introduced in Eqs. �25� and �26�

Uac
2 = C1

U�S1ac� + C2
US2,

�43�
3Wac

2 = C1
W�S1ac� + C2

WS2.

From this we obtain an expression for the W ,U correlation
coefficient by forming the appropriate products and taking
averages,

R =
C1

UC1
W�1

2 + C2
UC2

W�2
2 + �C1

UC2
W + C1

WC2
U��1�2RS

	�C1
U�2�1

2 + �C2
U�2�2

2 + 2C1
UC2

U�1�2RS
	�C1

W�2�1
2 + �C2

W�2�2
2 + 2C1

WC2
W�1�2RS

. �44�

This estimation of R is plotted in Fig. 4 as a function of
lattice constant for RS=0, 0.5 and 0.75, for the case �1=�2.
Clearly the value of RS makes little difference in the region
of interest, ac
rm or less, where R is above 0.99. Note that
all curves drop dramatically as the lattice constant ap-
proaches the inflection point �k2=0� of the potential �the pre-
cise value at which R becomes zero depends on the statistics
of S1ac and S2�. In this regime, however, higher-order terms
in displacements, including S3, S4, etc., become more impor-
tant, and because of Eq. �29� their inclusion tends to restore
R to a high value �we have not calculated their effect in
detail�. Also plotted is the estimation of R obtained by as-
suming that particle displacements are uncorrelated and
Gaussian distributed with variance �u

2 for each �Cartesian�
component, corresponding to an Einstein model of the vibra-
tional dynamics. In this case tedious but straightforward al-

gebra allows the means and �co-�variances of S1ac and S2 to
be calculated explicitly for a given lattice. The results for sc
and fcc are given in Table I. Notice that the variance of S2 is
somewhat larger than that of S1ac, while their means are
equal. This can be traced to the fact that the latter contains

TABLE I. Statistics of S1ac and S2 assuming uncorrelated particle displace-
ments with variance �u

2 for each Cartesian component, for sc and fcc lattices.

sc fcc

�S1ac� 6N�u
2 12N�u

2

�S2� 6N�u
2 12N�u

2

var�S1ac� 30N�u
4 108N

var�S2� 36N�u
4 120N

cov�S1ac ,S2� 24N�u
4 96N

RS 0.73 0.84
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twice as many cross terms as the former, and a factor of 1 /2,
so the contribution from such terms to the mean is the same
in both cases, while the contribution to the variance is
smaller for S1ac. From the �co-�variances we find the corre-
lation coefficient RS=0.73 and RS=0.84 for the sc and fcc
cases, respectively. These are also plotted in Fig. 4. A more
exact calculation would take into account the true normal
modes of the crystal but would yield little of use: Data from
the crystal simulations at very low temperature, also plotted
in Fig. 4 agree within estimated numerical errors with both
the sc and fcc estimates. The key point of this figure—that R
is close to but less than 1—apparently would change little by
taking the true crystal dynamics into account. In particular, it
is important to note that if R=1 exactly, then this would be
true no matter what kind of weighted average of configura-
tions is taken �what kind of ensemble�, so a value less than
unity in the Einstein approximation is sufficient to disprove
the hypothesis that R→1 as T→0.

4. The role of the coefficients C1,2
U,W

Since the detailed statistics of S1 and S2 have little effect
on the W ,U correlation, it must be mainly due to the numeri-
cal values of the coefficients C1,2

U,W. We can estimate the ef-
fect of these by assuming that S1ac and S2 have equal vari-
ance and are uncorrelated �RS=0�. Then according to Eq.
�44� the W ,U correlation coefficient is

R =
C1

UC1
W + C2

UC2
W

	�C1
U�2 + �C2

U�2	�C1
W�2 + �C2

W�2
, �45�

which has the form of the cosine of the angle between two
vectors CU��C1

U ,C2
U� and CW��C1

W ,C2
W�. Thus the close-

ness of R to unity indicates that these vectors are nearly
parallel. The tangents of the angles these vectors make with
the C1 axis in �C1 ,C2�-space are given by Eqs. �30� and �31�;
clearly the two angles become equal in the limit of small ac,
where n�1� and n�2� converge. On the other hand, for ac
rm

where k1=0 and n�1� diverges, the two vectors are

CU = �0,k2/2�ac
2,

�46�
CW = − �k2,k2 + k3ac/2�ac

2

= − k2ac
2�1,1 − 1

2 �n�2� + 2��

= k2ac
2�− 1,

n�2�

2
 .

Clearly CU is parallel to the C2 axis, while CW deviates from
it by an angle of the order of 2 /n�2�
1 /10. The W ,U corre-
lation coefficient is then R=cos�1 /10�
1− 1

2 �1 /10�2


0.995, in agreement with the bottom curve �circles� in the
main part of Fig. 4. In this case �ac=rm, k1=0, S1ac and S2

uncorrelated with equal variance�, we can obtain a simple
expression for the slope

� =	�C1
W�2 + �C2

W�2

�C1
U�2 + �C2

U�2

=
k2

3
	1 + �n�2�/2�2

�k2/2�2

=
2

3
	1 + �n�2�/2�2 


n�2�

3
�47�

consistent with the result from the 1D case.
Thus when we look at the “collective” correlations in the

crystal, we naturally get a slope involving the effective
power-law exponent n�2�. Since the latter evaluated at the
potential minimum is similar to n�1� at the zero of the poten-
tial, the slope is similar to that seen in the liquid phase. On
the other hand, it is more typical to think about crystal dy-
namics starting from a harmonic approximation, adding in
anharmonic terms when necessary for higher accuracy. How
does it work here? If we set k3=0 as well as k1=0, so we
consider the purely harmonic system with the nearest-
neighbor distance at the minimum of the potential, then we
have CU= �0,k2 /2� and CW=−�k2 /3��1,1�. These are not
close to being parallel, so the correlation will be weaker
�coming mainly from that of S1 and S2� but more particularly,
it will be negative, thus qualitatively different from the an-
harmonic case. Thus the presence of the k3 affects the results
at arbitrarily low temperature, so the harmonic approxima-
tion is never good enough. This is reminiscent of thermal
expansion, which does not occur for a purely harmonic crys-
tal. In fact, the Grüneisen parameter for a 1D crystal with
nearest neighbor interactions may be shown8 to be equal to
1+n�2��ac� /2.

Finally we consider the more realistic fcc crystal. First
note that Eqs. �35� and �37� are unchanged as long as ac is
now interpreted as the nearest-neighbor distance rather than
the cubic lattice spacing: Each position in a fcc lattice has 12
nearest neighbors, four located in each of three mutually or-
thogonal planes. Taking the xy and parallel planes first, the
neighbors are located along the diagonal directions with re-
spect to the cubic crystal axes. As before we can do the sum
first over bonds forming a row, then over all parallel rows.
For a given plane there are two orthogonal sets of rows, but
the form of the sums in Eqs. �35� and �37� includes all bonds.
The results of the calculation of �co-�variances of S1 and S2

in the Einstein model of the dynamics are changed in a way
that, in fact, increases their mutual correlation and therefore
the W ,U correlation, as shown in Table I and Fig. 4.

To summarize this subsection, the correlation in the crys-
tal is an anharmonic effect that persists in the limit T→0. It
works because �1� the constraint of fixed volume causes the
terms in U and W that are first order in particle displace-
ments to cancel and �2� the coefficients of the “transverse”
second-order terms are small compared to those of the “par-
allel” ones, a fact which can be traced to the resemblance of
the potential to a power law at distances shorter than the
potential minimum. “Small” here means of the order of
1 /10, which leads to over 99% correlation because R is es-
sentially the cosine of this quantity. In one dimension there
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are no transverse displacements and the correlation is 100%
as T→0; in more than one dimension as T→0 the correla-
tion is very close to unity but never 100%.

To gain a more complete insight into the fluctuations, we
next present an analysis that clarifies exactly the contribu-
tions to fluctuations from different distances, without ap-
proximations, now again with the liquid case in mind.

C. Fluctuation modes

In the last two subsections we considered single-pair ef-
fects �associated with r�rm� and collective effects �associ-
ated with r
rm�, respectively. In this section we focus on
contributions from particular pair separations without keep-
ing track of which actual particles are involved. We identify
the contributions to U and W coming from all pairs whose
separation lies within a fixed small interval of separations r;
fluctuations in the number of such pairs generate fluctuations
in the contributions. By considering all intervals we can sys-
tematically analyze the variances and covariances of U and
W in terms of pair separation, which is the purpose of this
section.

The instantaneous values of U and W are given by Eq.
�13� and �14�, generalized to an arbitrary pair potential. By
taking a time �or ensemble� average we get the correspond-
ing expressions for �U� and �W� in terms of g�r���g�r , t��,
the usual thermally averaged RDF. Now we consider the
variances ���U�2� and ���W�2�, and the covariance
��U�W�. Starting with, for example, �U�t�
=4�	N /2�0

�drr2v�r��g�r , t�, where �g�r , t��g�r , t�−g�r�,
averaging and taking everything except �g�r , t� outside the
average, we have

���U�2� = �4�	N/2�2�
0

�

dr1r1
2�

0

�

dr2r2
2v�r1�v�r2�

��g�r1,t��g�r2,t�� , �48�

���W�2� = �4�	N/2�2�
0

�

dr1r1
2�

0

�

dr2r2
2w�r1�w�r2�

��g�r1,t��g�r2,t�� , �49�

��U�W� = �4�	N/2�2�
0

�

dr1r1
2�

0

�

dr2r2
2v�r1�w�r2�

��g�r1,t��g�r2,t�� . �50�

Clearly the quantity, which contains the essential statistical
information about the fluctuations, is ��g�r1 , t��g�r2 , t��, the
covariance of the RDF with itself. Its magnitude is inversely
proportional to N, so that ���U�2� is proportional to N, as it
should be. The variances of U and W and their covariance
are integrals of this function with different weightings. To
make further progress, we integrate the integrands for the
variances over M M “blocks” in r1, r2-space. This is
equivalent to considering the energy, say, as the following
sum of M interval energies,

U�t� = �
a=1

M

Ua�t� , �51�

where the interval energy Ua�t� is defined as the integral
between boundaries ra and ra+1,

Ua�t� �
N

2
	�

ra

ra+1

dr4�r2g�r,t�v�r� . �52�

The virial can be similarly represented as a sum of con-
tributions from the same r-intervals, W�t�=�a=1

M Wa�t�. From
now on we consider the primary fluctuating quantities to be
Ua�t� and Wa�t� and seek to understand the correlation be-
tween their respective sums in terms of correlations between
particular Uas and Was. In order to achieve a reasonable
degree of spatial resolution, we do not make the intervals
�blocks� too big, and choose an interval width of 0.05. This
gives M =42 intervals: U1 is the contribution to the energy
coming from pairs with separation in the range of 0.85–0.9,
marking the lower limit of nonzero RDF, while U42 refers to
the range 2.9–2.95, marking the cutoff distance of the poten-
tial used here. We shall see explicitly that only distances up
to around 1.4 contribute significantly to the fluctuations. We
denote deviations from the mean as, e.g., �Ua=Ua− �Ua�
with the angle brackets representing the time �or ensemble�
average.

We are interested in the covariance of the Ua’s with
themselves �including ��Ua�Ub�, a�b�, the Wa’s with
themselves, and the Ua’s with the Wa’s. These covariances
are just what is obtained by integrating the integrands in Eqs.
�48�–�50� over the block defined by the corresponding inter-
vals for r1 and r2. These values are conveniently represented
using matrices �UU, �WW, and �UW defined as

��UU�ab = ��Ua�Ub� , �53�

��WW�ab = ��Wa�Wb� , �54�

and

��UW�ab = ��Ua�Wb� . �55�

Note that the sum of all elements of �UU is the energy vari-
ance since it reproduces the double integral of Eq. �48�; simi-
larly, for the other two matrices

���U�2� = �
a,b

��UU�ab, �56�

���W�2� = �
a,b

��WW�ab, �57�

��U�W� = �
a,b

��UW�ab. �58�

At this point we make one further transformation. Define
new matrices �UU*, �WW*, and �UW* by

�UU* � �UU/���U�2� , �59�

�WW* � �WW/���W�2� , �60�

and
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�UW* � �UW/	���U�2����W�2� . �61�

This is equivalent to normalizing the Ua’s by the standard

deviation 	���U�2� and the Wa’s by 	���W�2�, respectively.
The elements of �UU*, �WW*, and �UW* can be thought of as
representing, in some sense, what fraction of the total
�co-�variance is contributed by the corresponding block. Nor-
malized in this way, the sum over all elements of �UU* and
�WW* is exactly unity and that for �UW* equals the correla-
tion coefficient R,

�
a,b

��UU*�ab = 1, �62�

�
a,b

��WW*�ab = 1, �63�

�
a,b

��UW*�ab = R . �64�

To make a direct analysis of all possible covariances, we
now construct a larger 2M 2M matrix by placing �UU* and
�WW* on the diagonal blocks, and �UW* and its transpose on
the off-diagonal blocks,

�Sup � � �UU* �UW*

��UW*�T �WW*
� . �65�

This “supercovariance” matrix contains all the information
about the covariance of the contributions of energy and virial
with each other. This symmetric and positive semidefinite9

matrix can be separated into additive contributions by spec-
tral decomposition as

�Sup = �
�

��v�v�
T , �66�

where v� is the normalized eigenvector whose �non-
negative� eigenvalue is ��—this follows from the diagonal-
ization of the matrix. Thus we decompose the supercovari-
ance into a sum of parts. This method of accounting for the

variance of many variables is the basis of the technique
known as principal component analysis �PCA�, which is a
workhorse of multivariate data analysis.10 The eigenvectors
represent statistically independent “modes of fluctuation;”
the corresponding eigenvalue is the part of the variance
within the 2M-dimensional space accounted for by the mode.
PCA is most effective when the eigenvectors associated with
the largest few eigenvectors account for most of the variance
in the set of fluctuating quantities. For example, in the ex-
treme case where one eigenvector accounts for over 99% of
the variance, we could claim that all the different apparently
random fluctuations of the different contributions to energy
and virial were moving in a highly coordinated way, such
that a single parameter �say, the value of any one of them�
would be enough to give the values of all.

In our case we are not necessarily interested in the
modes with the largest eigenvalues: a large eigenvalue could
describe a fluctuation mode where the individual Ua’s and
Wa’s change a lot but their respective sums do not; this
would correspond to the contributions from one interval in-
creasing while those in others decrease, in such a way that
the total is roughly constant. What we really want are those
modes that contribute a lot to the variance in energy and
virial and to their covariance. This is easy to do by summing
all elements in the appropriate block of the matrix ��v�v�

T,
where v�, �� are the normalized eigenvector and eigenvalue
in question.11 In Table II we list the first ten eigenvalues in
decreasing order, along with their contributions to the nor-
malized variances of energy, virial, and their covariance—
the normalized covariance being equal to RWU. In addition,
an “effective slope” for each mode is obtained from the �th
eigenvector as

�� =	���W�2�
���U�2�

�a=M+1
2M �v��a

�b=1
M �v��b

= �
�a=M+1

2M �v��a

�b=1
M �v��b

, �67�

where the numerator gives the sum of virial contributions for
that mode, and the denominator the sum of energy contribu-

TABLE II. First ten eigenvalues of the supercovariance matrix �Eq. �65��, their fractional contributions to the
three �co-�variances �Eqs. �62�–�64��, and their effective slopes �Eq. �67�� for the SCLJ liquid with parameters
as in Fig. 1 of Paper I �	=34.6 mol / l, T=80 K�. Contributions from the dominant four eigenvectors are in
boldface. The last three rows list sums of the third, fourth, and fifth columns over, respectively, the dominant
four, the first ten, and all 2M eigenvectors. The sum of the fifth column over all eigenvectors should be
compared �see Eq. �64�� to the R=0.939 listed in Table I of Paper I.

Index Eigenvalue U-var. contr. W-var. contr. Corr. coeff. contr. Effective slope

1 1.73 0.01 0.01 0.01 5.38
2 1.55 0.04 0.06 0.05 7.63
3 1.11 0.24 0.15 0.19 4.98
4 0.87 0.25 0.25 0.25 6.34
5 0.78 0.20 0.14 0.17 5.27
6 0.58 0.11 0.17 0.13 7.80
7 0.34 0.02 0.05 0.03 10.14
8 0.23 0.01 0.03 0.01 13.67
9 0.13 0.00 0.01 0.00 116.19
10 0.10 0.01 0.00 −0.00 −3.63
�3,. . .,6 ¯ 0.797 0.709 0.742 ¯

�1,. . .,10 ¯ 0.884 0.877 0.849 ¯

�1,. . .,2M ¯ 1.000 1.000 0.938 ¯
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tions. The factor in front, which is numerically equal to the
overall slope �, accounts for the standard deviation that we
normalized the Ua’s and Wa’s to define the matrices �UU*,
�WW*, and �UW*.

In the above equation, it looks like �� is determined by
the overall �, whereas we could expect more the opposite,
that the overall slope is somehow an average of the indi-
vidual effective mode slopes. It looks like this because of the
normalization choice we made in determining the decompo-
sition. We can relate the �� to the � in a more meaningful
way by writing the sums in Eqs. �62� and �63� in terms of the
spectral decomposition Eq. �66�,

1 =
�a,c�a,c

WW

�b,d�b,d
UU =

���a,c�M���v��a�v��c

���b,d�M���v��b�v��d
�68�

=
������a�M�v��a�2

������b�M�v��b�2 �69�

=
�������/��2��a�M�v��a�2

������b�M�v��b�2 , �70�

where in the last step Eq. �67� was used. Multiplying both
sides by �2 we get an expression for the latter as a weighted
average of the squares of the ��,

�2 =
��X���

2

��X�

, �71�

where the weight of a given mode slope �� is �apart from
normalization� X������a�M�v��a�2, combining the eigen-
value and the square of the summed “energy part” of the
corresponding eigenvector.

Now we can notice that the third, fourth, fifth, and sixth
eigenvectors, to be referred to respectively as EV3, EV4,
EV5, and EV6, account for most of the three �co-�variances
�totalling 0.80 out of 1.00, 0.71 out of 1.00, and 0.74 out of
0.94 for variance of U, variance W, and correlation coeffi-
cient, respectively�. These four eigenvectors are represented
in Fig. 5. We observe that, as expected, most of the fluctua-
tions are associated with pair separations well within the first
peak of the RDF, which extends to nearly r=1.6� �see Fig.
2�a��. In fact, not much takes place beyond r=1.3�. Interest-
ingly, of the four, EV5, accounting for less that 20% of the
variances, is the only one that directly fits the idea that the
fluctuations take place at short distances, while the other
modes extend out to r
1.3�, beyond even the inflection
point of the potential �around 1.24��.

It is instructive to repeat the fluctuation mode analysis
for a nonstrongly correlating liquid, the Dzugutov liquid at
T=0.65. We do not show the full results here but they can be
summarized as follows. There are two modes that are con-
centrated at distances less than and around the first minimum
of the potential. These have slopes of 5.73 and 5.01 and
contribute a total of about 0.35–0.4 to the variances and cor-
relation coefficient. Since the latter is 0.585 at this tempera-
ture, these modes account for most of it. There are four more
modes that contribute more than 5% to the variances, but the
slopes are quite different: −9.34, 7.20, 28.43, and −0.67.
These four modes all include significant contributions at dis-

tances corresponding to the peak in v�r�; clearly this extra
peak in the potential and the associated peak in the pair-virial
w�r� give rise to components in the fluctuations which cannot
be related in the manner of an effective inverse power law,
even though fluctuations occurring around the minimum can.
As a result the overall correlation is rather weak.

D. Synthesis: Why the effective power law works
even at longer distances

We can apply ideas similar to those used in the crystal
analysis to understand why the correlation holds even for
modes active at separations larger than the minimum, why
the slopes are similar to the effective power-law slopes, and
why the effective power law works as well as it does. Recall
the essential ingredients of the crystal analysis: the impor-
tance of summing over all pairs, the fixed-volume constraint,
and the increase in the magnitude of coefficients of the Tay-
lor expansion with order. These are equally valid here, but
now we use them to constrain the allowed deviations in g�r�
from its equilibrium value, instead of displacements from a
fixed equilibrium configuration. Define the resolved pair-
density 	�r� by

	�r� � �N/2�4�r2	g�r� . �72�

The requirement that this integrates to the total number of
pairs in the system, �0

�	�r�dr=N�N−1� /2, gives a global
constraint on fluctuations of 	�r�,

�
0

�

�	�r�dr = 0. �73�

A typical fluctuation will have peaks around the peaks of
g�r�, but only those near the first peak will significantly af-

FIG. 5. �Color online� Representations of the eigenvectors 3, 4, 5, and 6 of
the supercovariance matrix. Squares represent variation in Ua values for a
mode; diamonds represent variation in Wa values.
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fect the potential energy and virial �Sec. II C�. We can as-
sume that, for a dense liquid not close to a phase transition,
almost any configuration � may be mapped to a nearby ref-
erence configuration �ref whose RDF is identical to the ther-
mal average g�r�. “Nearby” implies that the particle displace-
ments relating the � and �ref are small compared to the
interparticle spacing.12 These displacements define the devia-
tion �	�r� of 	�r� from its equilibrium value. Mapping to
�ref gets around the absence of a unique equilibrium configu-
ration as in the crystal case.

Let us consider what restriction this places on �	�r�;
these are illustrated in Fig. 6. Because the displacements are
small, �	�r� must be local: a peak in �	�r� at some r must
be compensated by an opposite peak at a nearby location rref

rather than one far away �thus example �b� in the figure is not
allowed�—this corresponds to a bond having length r in the
actual configuration and length rref in �ref �Fig. 6�c��. Finally
fixed volume implies that a fluctuation cannot involve any
substantial change in the mean nearest-neighbor bond length.
This may be expressed mathematically as the near vanishing
of the first moment of �	�r�,

�
first peak

r�	�r�dr � 0. �74�

Thus, if a particle is displaced toward a neighbor on one side,
it is displaced away from a neighbor on the opposite side,
thus the resulting fluctuation is expected to look like Fig.
6�d�, which is characterized by vanishing zeroth and first
moments. Note that we restrict the integral to the first peak.
The principle that fluctuations of �	�r� must be local allows
us to write a version of Eq. �73� similarly restricted:

�
first peak

�	�r�dr = 0. �75�

Equations �74� and �75� cannot be literally true, since there
must be contributions from fluctuations at whatever cut-off
distance is used to define the boundary of the first peak. For
instance, there could be a fluctuation such as Fig. 6�d� cen-
tered just to the right of this cutoff, so that only the first
positive part was included in the integrals. We can ignore
these contributions if we assume that the potential is trun-
cated and shifted to zero at the boundary, as is standard in
practice �although usually at larger distances�. Then fluctua-
tions right at the boundary do not contribute to the potential
energy, The fact that the only contributions to the integral are
at the boundary is a restatement of the locality of
fluctuations.13

Now we make a Taylor series expansion of v�r� around
the maximum rM of the first peak of g�r�, using U
=�0

�	�r�v�r�dr,

�U = �
first peak

�	�r��v�rM� + k1�r − rM�

+
1

2
k2�r − rM�2 + ¯ 

� �
p

kp

p!
Mp. �76�

As for the crystal kp is the pth derivative of v�r� at the
expansion point �rM here�, while Mp is the pth moment of
�	�r�,

Mp � �
first peak

�	�r��r − rM�pdr . �77�

A similar series exists for W, with coefficients given by
Eq. �26�,

3�W = �
p

Cp
W

�rM�p Mp. �78�

The moments play a role exactly analogous to the sums Sp in
the analysis of the crystal. The near vanishing of M1 corre-
sponds to that of S1 in the crystal case, both following from
the fixed-volume constraint; as there, it probably holds only
to first order in particle displacements �except in one dimen-
sion where it is exact�, but we have not tried to make a
detailed estimate as we did with the crystal. Recalling that
the extra contributions to the M2 terms will be small anyway,
in view of Eqs. �30� and �31�, we simply set M1=0, so the
two series become �noting that M0=0 also�

�U = �
p=2

�

Cp
U Mp

rM
p ,

�79�

3�W = �
p=2

�

Cp
W Mp

rM
p ,

where the coefficients Cp
U,W are those defined in Eqs. �25�

and �26�, but with rM replacing ac. The points made in

FIG. 6. �Color online� Intuitive picture of allowed and disallowed fluctua-
tions in 	�r�: �a� is not allowed because it violates the global constraint
��	�r�=0; �b� satisfies the global constraint but not locality; �c� could cor-
respond, for instance, to a single bond becoming shorter, but this is incon-
sistent with fixed volume �vanishing first moment—such a change cannot
happen in isolation�; and �d� is allowed—it corresponds, for example, to a
single particle being displaced toward one neighbor and away from another.
Thus one bond shortens and one lengthens.
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Sec. II B regarding the relation between the two series are
equally valid here. At orders p=2 and higher, corresponding
coefficients are related by the n�p��rM�, which are always all
above a=12. We expect from dimensional considerations
that the variance of Mp is proportional to NwFP

2p, where wFP


0.3rM is the width of the first peak of g�r�. Thus moments
of higher order should contribute less, and therefore M2

should dominate, implying that the proportionality between
�U and �W is essentially n�2��rM�. This is in the range of
15–24 for rM in the range of 1.05�–1.15�, giving slopes
between 5 and 8, similar to those observed in the fluctuation
modes. Unlike the low-T limit of the crystal, we cannot as-
sume that the fluctuations are particularly localized around
rM, so it is not surprising that a range of slopes show up.
Notice that we do not see arbitrarily high mode slopes cor-
responding to the divergence of n�2��r� at the inflection point
of the potential. Rather, for modes centered there, the as-
sumption that we can neglect higher moments of the fluctua-
tions no longer holds and there is an interpolation between
n�2��r� and n�3��r� which is smaller �but still greater than
a=12�.

We can now understand also why the potential and virial
fluctuations, as “reconstructed” using the effective power-
law potential �Fig. 3�, agree so well with the true fluctua-
tions, even though the fluctuation mode analysis shows that
there are significant contributions from distances around and
beyond the minimum, well away from the matching point r
=1.015�. Figure 7 shows the LJ�12,6� potential, the n
=19.2 power law �which gave the best fit in Sec. II A�, and
their difference, vdiff�r��vLJ�r�−vPL�r�. The latter is obvi-
ously very small and flat near the matching point but grows
significantly in an approximately linear fashion at distances
larger than r
1.05�. In view of Eqs. �16� and �72�, a fluc-
tuation of Udiff can be written as

�Udiff = �
0

�

vdiff�r��	�r�dr , �80�

which has the form of an inner product of functions. Vanish-
ing fluctuations of Udiff follows if either �1� vdiff is identically

zero, or �2� it is nonzero, but orthogonal to the space of
allowed �	�r�. Given that vdiff is not particularly small ex-
cept close to the matching point �see Fig. 7�, the fact that
Udiff fluctuations are relatively small even though they are
associated with distances away from the matching point in-
dicates that point �2� must hold approximately. Since allowed
�	�r� functions are those with no constant or linear term �see
Eqs. �73� and �74��, functions orthogonal to these are those
with only a constant and linear term: f�r�=Cf0�r�+Df1�r�,
where f0�r� is a constant function and f1�r� is a linear func-
tion with zero mean over the range of interest. It is clear in
Fig. 7 that vdiff is not exactly of this form, but it can be well
approximated by such a function. This approximation can be
checked by standard methods of the linear algebra of func-
tion spaces. First we choose a range �r1 ,r2� over which func-
tions are to be defined. For purposes this should include the
range of significant contributions to W and U �Fig. 5�. We
choose r1=0.95� and r2=1.4�. The normalized, mutually
orthogonal basis vectors f0�r� and f1�r� are then given by

f0�r� = 1/	r2 − r1,

�81�

f1�r� =	 12

�r2 − r1�3 �r − �r1 + r2�/2� .

The part of vdiff�r� that is spanned by these basis func-
tions is v0f0+v1f1, where vi��r1

r2f i�r�vdiff�r�dr is the inner
product of vdiff�r� and the corresponding basis vector. We
define vdiff

P �r� as the part of vdiff�r� projected onto the space
of allowed functions,

vdiff
P �r� = vdiff�r� − v0f0�r� − v1f1�r� . �82�

This function is also plotted in Fig. 7, where it can be seen
that it is certainly small compared to vdiff�r� itself. More
importantly, it is also small compared to the projected part of
vLJ�r�, vLJ

P �r�, defined analogously, because it is this that ex-
plains why the fluctuations of Udiff are small compared to
those of ULJ �or equivalently UPL�. This may be quantified by
noting that the ratio of their norms is 0.09, which indicates
how orthogonal vdiff�r� is to the space of allowed �	�r�. If
we projected out only the constant term from vdiff�r� and
vLJ

P �r� �the a priori more obvious way to compare the size of
two functions� the ratio of norms would be 0.50, and it
would not be obvious why vPL does as good a job as it does.
Thus, again, constant-volume constraint, implying Eq. �74�,
is important.

The above discussion applies equally well to the virial.
We can now write a more accurate approximate expression
for vLJ�r�, which we call the extended effective inverse
power-law approximation,

vLJ�r� � Ar−n + B + Cr , �83�

where A, B, and C are constants. The associated pair virial
�w�r��rv��r�� is then

wLJ�r� � − nAr−n + Cr , �84�

which has the same form. In both cases the term Cr contrib-
utes to the mean value but not the fluctuations because
�r	�r�dr is nonzero, while �r�	�r�dr�0 for those �	�r�

FIG. 7. �Color online� The true potential vLJ�r�, the best effective power law
vPL�r� �in the sense that the fluctuations in potential energy and virial and
reproduced most faithfully�, and their difference vdiff�r�. Also shown are the
projected versions vLJ

P �r� and vdiff
P �r� where the constant and linear terms

�determined over the interval 0.95� to 1.4�� have been subtracted off. It is
the projected functions that should be compared in order to make a state-
ment about the smallness of vdiff�r� relative to vLJ�r� since only the projected
functions contribute to fluctuations of total potential energy.
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which are allowed at fixed volume. Note also that the con-
tribution to the mean values from Cr will depend on volume
because g�r� and, hence, 	�r� do. Thus we can see that al-
though there are significant contributions to fluctuations
away from the matching point where the power law fits the
true potential well, these are essentially equal for both the
power law and the true potential because the difference be-
tween the two potentials in this region is almost orthogonal
to the allowed fluctuations in 	�r�. This also explains why
the fluctuation only holds at fixed volume �which would not
be explained by the assumption that short-distance encoun-
ters dominate the fluctuations�.

The extended power-law approximation, determined em-
pirically by the projection procedure, provides an alternative
way to understand why the effective exponent n�1� evaluated
at r
� agrees well with n�2� evaluated around the minimum
rm. For the extended effective power-law approximate �Eq.
�83��, we get

n�1��r� =
− n�n + 1�Ar−�n+1�

− nAr−�n+1� + C
− 1,

�85�

n�2��r� =
n�n + 1��n + 2�Ar−�n+2�

n�n + 1�Ar−�n+2� − 2 = n .

Note that n�2��r� is constant and equal to the exponent n of
the power law, while n�1��r� only approaches n when r is
small enough that C in the denominator can be neglected �for
the true potential n�2��r� increases with r and eventually di-
verges �see Fig. 1��. This emphasizes the greater usefulness
of n�2� in identifying the effective power-law exponent. Re-
call also that our analysis earlier in this section indicates that
n�2��r�, involving that the second and third derivatives of v�r�
near its minimum, is more fundamentally the cause of the
W ,U correlations, explaining something like 80% of the cor-
relation in the liquid phase and over 99% in the crystal
phase. The fact that Eq. �83� is a good approximation for the
Lennard-Jones potential pushes the correlation to over 90%
also in the liquid phase.

To summarize the last two subsections, we have shown
here that the source of the fluctuations is indeed pair separa-
tions within the first peak, although only a relatively small
fraction of the variances come from the short-r region where
the approximation of the pair potential by a power law is
truly valid. We have also seen how the Taylor-series analysis
�which involves the crucial step of taking a sum over all
pairs� may be extended to cover the whole first peak area,
with all terms giving roughly the same effective slope, given
essentially by the second-order effective exponent:
�
n�2��rm� /3. The fact that this matches the first-order ef-
fective exponent at the shorter distance r
� is equivalent to
the extended effective power-law approximation �Eq. �83��,
which given a constant volume is what justifies the replace-
ment of the potential by a power law �empirically demon-
strated in Fig. 3�.

III. SOME CONSEQUENCES OF STRONG PRESSURE-
ENERGY CORRELATIONS

This section gives examples of consequences of strong
pressure-energy correlations. The purpose is to show that
these are important, whenever present. Clearly, more work
needs to be done to identify and understand all consequences
of strong pressure-energy correlations.

A. Measurable consequences of instantaneous
W ,U correlations

The observation of strong W ,U correlations is of limited
interest if it can only ever be observed in simulations. How
can we make a comparison with experiment? In general,
fluctuations of dynamical variables are related to thermody-
namic response functions,14–16 for example, those of U are
related to the configurational part of the specific heat, CV

conf.
The latter is obtained by subtracting off the appropriate ki-
netic term, which for a monatomic system such as argon is
3NkB /2. The virial fluctuations, however, although related to
the bulk modulus, are not directly accessible because of an-
other term that appears in the equation, the so-called hyper-
virial, which is not a thermodynamic quantity.2 Fortunately
this difficulty can be handled.

Everything in this section refers to the NVT ensemble.
First we define the various response functions and configu-
rational counterparts, the isothermal bulk modulus KT, CV,
and the “pressure coefficient,” �V,

KT � − V� ��p�
�V


T
, KT

conf � KT −
NkBT

V
,

CV � � �E

�T


V
, CV

conf � CV −
3

2
NkB,

�86�

�V � � ��p�
�T


V
, �V

conf � �V −
NkB

V
,

pconf � p −
NkBT

V
=

W

V
.

We also define cV�CV /V. The following fluctuation formu-
las are standard �see, for example, Ref. 2�

���W�2�
kBTV

=
NkBT

V
+

�W�
V

− KT +
�X�
V

, �87�

���U�2�
kBT2 = CV −

3

2
NkB = CV

conf, �88�

��U�W�
kBT2 = V�V − NkB = V�V

conf. �89�

Here X is the so-called “hypervirial,” which gives the change
in virial upon an instantaneous volumetric scaling of posi-
tions. It is not a thermodynamic quantity and cannot be de-
termined experimentally, although it is easy to compute in
simulations. For a pair potential v�r�, X is a pair-sum,
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X = �
pairs

x�r�/9, �90�

where x�r�=rw��r�. If we use the extended effective power-
law approximation �including the linear term� discussed in
the last section, then from Eq. �84� we get x�r��n2Ar−n

+Cr. Summing over all pairs, and recalling that when the
volume is fixed the Cr term gives a constant, we have a
relation between the total virial and total hypervirial,

X = �n/3�W + const. �91�

This constant survives, of course, when we take the ther-
mal average �X�, as do the corresponding constants in
�U� , �W�. To get rid of these constants, one possibility would
be to take derivatives with respect to T, but this can be prob-
lematic when analyzing experimental data. Instead we sim-
ply compare quantities at any temperature to those at some
reference temperature Tref; this effectively subtracts off the
unknown constants. Taking first the square of the correlation
coefficient, we have

R2 =
���U�W��2

���U�2����W�2�
, �92�

which implies

R2 ���W�2�
kBTV

=
1

kBTV

���U�W��2

���U�2�
. �93�

Inserting the fluctuation formulas �Eqs. �87� and �89�� gives

R2��p� − KT +
�X�
V
 =

1

kBTV

�kBT2V�V
conf�2

kBT2CV
conf �94�

=T
��V

conf�2

cV
conf . �95�

Defining quantities Ã��p�−KT+ �X� /V and B
�T��V

conf�2 /cV
conf �the reason for the tilde on A will become

clear�, we have R2Ã=B. This is an exact relation. To deal
with the hypervirial we first take differences with the quan-
tities at Tref, assuming that the variation in R is much smaller

than the Ã and B variations:

R2�Ã − Ãref� = B − Bref, �96�

where Ãref= Ã�Tref�, etc. Ã− Ãref written out explicitly is

Ã − Ãref = ��p� − KT� − ��p�ref − KTref� +
�X� − �X�ref

V
. �97�

Next we use the power-law approximation to replace �X�
− �Xref� with �n /3���W�− �Wref��. This is the crucial point:
whereas it is often not a good approximation that �X�
= �n /3��W� due to the unknown additive constants discussed
above, subtracting two state points considers changes in �X�
and �W� with temperature. Recall from Sec. III B of Paper I
that the changes in mean values ��W� and ��X� between
�nearby� temperatures are related as the linear regression of
the fluctuations of those quantities at one �nearby or interme-
diate� temperature. The linear relation between subtracted
mean values holds if the instantaneous W and X are strongly

correlated in the region of interest. The latter is confirmed by
our simulations; indeed the correlation of instantaneous val-
ues of X and W is even stronger than for W and U, with
approximately the same slope �Fig. 8�. Thus Eq. �97� be-
comes

Ã − Ãref � ��p� − KT� − ��p�ref − KTref� +
n

3

�W� − �W�ref

V

�98�

=A − Aref, �99�

where A��p�−KT+ �n /3���W� /V� �no tilde� contains quanti-
ties that are all directly accessible to experiment except for
the effective power-law exponent n. This can be obtained by
noting that if there were perfect correlation, one could inter-
change �W and �n /3��U; thus,

�V
conf

CV
conf/V

=
�V

conf

cV
conf =

��U�W�
���U�2�

=
n

3
, �100�

which gives for A

A = �p� − KT +
�p�conf�V

conf

cV
conf . �101�

Thus to compare with experiment one should plot
B−Bref against A−Aref; the prediction, in the case of near
perfect correlation, R2�1, is a straight line with slope close
to unity. Figure 9 shows data for argon for T between 200
and 660 K. Argon was chosen because as a monatomic sys-
tem there are no rotational or vibrational modes contributing
to the heat capacity and it is therefore straightforward to
subtract off the kinetic part. Also we restrict to a relatively
high temperature to avoid quantum effects. The correlation
coefficient R given as the square root of the slope of a linear
fit is 0.96. Note that the assumed constancy of R is confirmed
�going to lower temperatures there are increasingly large de-

FIG. 8. �Color online� Scatter plot of instantaneous virial and hypervirial �in
dimensionless units� for a SCLJ system at 	=1.0, T=0.80 �NVE�. The cor-
relation coefficient between these quantities is 0.998. The hypervirial is the
main contribution to the configurational part of the bulk modulus; it gives
�after dividing by volume� the change in virial for a given relative change in
volume. The sizable constant term in the linear fit shows that Eq. �91� is a
poor approximation. The slope is 4.9, about 10% smaller than �
5.4 for
this state point. The difference reflects the limit of the validity of the power-
law description—in fact, a more detailed analysis shows that the relation
between W and X is dominated by n�3��r�, which is smaller than n�2��r�
�Fig. 1�.
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viations�. The importance of subtracting from a reference
state point is highlighted by the inset, which shows that
A�T�=B�T� does not hold: There is a correlation in the fluc-
tuations which is not present in the full equation of state.4

B. Time averaging: Pressure-energy correlations
in highly viscous liquids

We have observed and discussed in Paper I that when
volume is held constant, the correlations tend to become
more perfect with increasing T, while along an isobar �con-
sidering still fixed-volume simulations, choosing the volume
to give a prescribed average pressure� they become more
perfect with decreasing T. This fact makes the presence of
correlations highly relevant for the physics of highly viscous
liquids approaching the glass transition. Basic questions such
as the origins of nonexponential relaxations and non-
Arrhenius temperature dependence are still vigorously de-
bated in this field of research.17–20 Instantaneous correlations
of the kind discussed in this work would seem to be relevant
only to the high frequency properties of a highly viscous
liquid; their relevance to the long time scales on which struc-
tural relaxation occurs follows from the separation of time
scales as explained below.

A question that is not actively debated in this research
field �but see, e.g., Refs. 21–23� is whether a single param-
eter is enough to describe a highly viscous liquid. The con-
sensus for more than 30 years is that with few exceptions
these liquids require more than just one parameter, a conclu-
sion scarcely surprising given their complexity. The meaning
of “having a single parameter” can be understood as follows.
Following a sudden change in volume, both pressure and
energy relax to their equilibrium values over a time scale of

minutes or even hours, sufficiently close to the glass transi-
tion. If a single parameter governs the internal relaxation of
the liquid, then both pressure and energy relax with the same
time scale, and, in fact, the normalized relaxation functions
are identical.21,23 This behavior can be expressed in the fre-
quency domain, as a certain quantity, the dynamic
Prigogine–Defay ratio, being equal to unity.23 A key feature
of highly viscous liquids is the separation of time scales
between the slow structural �“alpha”� relaxation �up to order
seconds� and the very short times �of order picoseconds�
characterizing the vibrational motion of the molecules. This
separation allows a more direct experimental consequence of
W ,U correlations than that described in the previous subsec-
tion: Suppose a highly viscous liquid has perfectly correlated
W ,U fluctuations. When W and U are time averaged over,
say, one-tenth of the alpha relaxation time ��,24 they still
correlate 100%. Since the kinetic contribution to pressure is
fast, its time average over �� /10 is just its thermal average,
and thus the time-averaged pressure equals the time average
of W /V plus a constant. Similarly, the time-averaged energy
equals the time-averaged potential energy plus a constant.
Thus the fluctuations of the time-averaged W and U equal the
slowly fluctuating parts of pressure and energy, so these slow
parts will also correlate 100% in their fluctuations. In this
way we get from the nonobservable quantities W and U to
the observable ones E and p �we similarly averaged to ob-
serve the correlation in the SQW system in Paper I�. The
upper part of Fig. 10 shows normalized fluctuations of en-
ergy and pressure for the commonly studied Kob–Andersen
binary Lennard-Jones system25 �referred to as KABLJ in Pa-
per I�, time averaged over one-tenth of ��. In the lower part
we show the dynamic Prigogine–Defay ratio,12 which in the
NVT ensemble is defined as follows:

�TV��� � −
cV�����1/�T�����

T��V�����2 . �102�

Here �T=1 /KT is the isothermal compressibility and � de-
notes the imaginary part of the complex frequency-
dependent response function. A way to interpret this quantity
can be found by considering the fluctuation-dissipation theo-
rem expressions for the response functions. For example the
frequency-dependent constant-volume specific heat cV��� is
given26 by

cV��� =
���E�2�

kBT2 −
i�

kBT2�
0

�

��E�0��E�t��exp�− i�t�dt ,

�103�

where E is the total energy. Taking the imaginary part we
have

cV���� = −
�

kBT2 �L���E�0��E�t�����, �104�

FIG. 9. �Color online� Data from the NIST database �Ref. 45� for supercriti-
cal argon at three different densities covering the temperature range of
200 K–660 K showing a strong virial-potential-energy correlation
�R=0.96� �reproduced from Ref. 4�. Here KT�−V���p� /�V�T,
pconf� p−NkBT /V=W /V �V

conf����p� /�T�V−NkB /V, and cV
conf�CV /V

− �3 /2�NkB /V. The diagonal line corresponds to perfect correlation. The
inset shows “unsubtracted” values for A and B; the fact that the data do not
fall on the solid line indicates that a power-law description does not hold for
the full thermodynamics.
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where we use L to represent Laplace transformation. Simi-
larly,

�1/�T����� =
�V

kBT
�L���p�0��p�t����� �105�

and

�V���� = −
�

kBT2 �L���E�0��p�t�����. �106�

Forming the Prigogine–Defay ratio then gives, after cancel-
ling factors of kB, T, V, and �,

�TV��� =
�L���E�0��E�t������L���p�0��p�t�����

�L���E�0��p�t�����2 .

�107�

We can see that the right-hand side has a similar structure to
a correlation coefficient, if we take the inverse square root.
So in a loose sense the dynamic Prigogine–Defay ratio can

be thought of as the inverse square of a correlation coeffi-
cient, referred to a particular time scale. This gives an intui-
tive reason for why it is in general greater or equal to unity,
with equality only achieved in the case of perfect
correlation.23 The lower panel of Fig. 10 shows this quantity
for a range of frequencies for the KABLJ system. It clearly
approaches one at low frequencies and stays within 20% of
one in the main relaxation region. In the sense above, this
corresponds to R�0.9, or strongly correlation.

The line of reasoning presented here opens for a new
way of utilizing computer simulations to understand ultravis-
cous liquids. Present-day computers are barely able to simu-
late 1 �s of real-time dynamics, making it difficult to predict
the behavior of liquids approaching the laboratory glass tran-
sition. We find that pressure-energy correlations are almost
independent of viscosity, however, which makes it possible
to make predictions regarding the relaxation properties even
in the second or hour range of characteristic times. Thus if a
glass-forming liquid at high temperatures �low viscosity� has
very strong pressure-energy correlations �R
1�, its eight
thermoviscoelastic response functions at ultraviscous condi-
tions may basically be expressed in terms of just one, irre-
spective of temperature �or viscosity�.

C. Aging and energy landscapes

We now discuss the significance of the present results for
the interesting results reported in 2002 by Mossa et al.27 who
studied the inherent states �ISs� visited by the Lewis-
Wahnström model28 of the glass-forming liquid ortho-
terphenyl �OTP� during aging, i.e., the approach to equilib-
rium. An IS is a local minimum of the so-called potential-
energy landscape �PEL� to which a given configuration is
mapped by steepest-descent minimization.29,30 The PEL for-
malism involves modeling the distributions and averages of
properties of the IS in the hope of achieving a compact de-
scription of the thermodynamics of glass-forming
liquids.31,32 The thesis of Mossa et al.27 and of the previous
work33 is that an equation of state can be derived using this
formalism which is valid even for nonequilibrium situations.
This involves including an extra parameter, namely, the av-
erage IS �potential� energy, �eIS�, so that the equation of state
takes the form

p�T,V,�eIS�� = pIS��eIS�,V� + pvib�T,V,�eIS�� , �108�

where pIS is the ensemble averaged IS pressure—for a given
configuration it is the pressure of the corresponding IS—and
pvib� p− pIS. The usefulness of splitting in this way lies in
the fact that pIS does not explicitly depend on T.

At equilibrium �eIS� is determined by V and T. The con-
clusion of Ref. 22 is that knowledge of �eIS� in nonequilib-
rium situations is enough to predict the corresponding pres-
sure �given also T and V�. This was based on the extensive
simulations of various aging schedules. Thus the authors
concluded that the ISs visited by the system while out of
equilibrium must be in some sense the “same” ones sampled
during equilibrium conditions. Same is effectively defined by
their results that averages of various IS properties �V, eIS, pIS,
as well as a measure of the IS curvature� are all related to

FIG. 10. �Color online� Upper panel, time-averaged �over �� /10, where ��

is the structural relaxation time� normalized fluctuations of E and p in NVT
simulations of the Kob–Andersen �Ref. 20� binary Lennard-Jones �KABLJ�
system, plotted against time in units of ��
103�AA

	m /�AA. The density was
1.2�AA

−3 , and the temperature was 0.474�AA. Middle panel, imaginary parts of
the three response functions −cv���, −�V���; and 1 /�T���, scaled to the
maximum value. Lower panel, dynamic Prigogine–Defay ratio for the same
simulation. The approach toward unity at frequencies smaller than the loss-
peak frequency �
1 /��� is exactly equivalent to the correlation between
time-averaged quantities shown in the upper panel �reproduced from
Ref. 19�.

184508-17 Pressure-energy correlations in liquids. II J. Chem. Phys. 129, 184508 �2008�
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each other the same way under nonequilibrium conditions as
under equilibrium conditions. It was similarly found that the
volume could be determined from �eIS� following a pressure
jump in a pressure-controlled simulation. On the other hand,
subsequent work by the same group found that this was not
at all possible for glassy water during compression/
decompression cycles.34

Now, our results �Paper I� for the same OTP model show
that it is a strongly correlating liquid. Thus we expect a gen-
eral correlation between individual, not just average, values
of pIS, the inherent state pressure �which lacks a kinetic term
and therefore equals the inherent state virial divided by vol-
ume� and eIS, for a given volume. Therefore, for any given
collection of ISs with the same volume—not just equilibrium
ensembles—the mean values of U and W will fall on the
same straight line as the instantaneous values. Note that this
would not hold if the correlation was nonlinear. Correspond-
ingly, for a given pIS, there is a general correlation between
individual values of eIS and V. In fact, any two of these
quantities determine the third with high accuracy, and this is
true at the level of individual configurations, including ISs.

To see how this works for cases involving fixed volume,
we write the total �instantaneous� pressure as a sum of an IS
part, which involves the virial at the corresponding IS, plus a
term involving the difference in the true virial from the IS
virial, plus the kinetic term:

p =
WIS

V
+

W − WIS

V
+

NkBT

V
. �109�

The first term is linearly related to the IS energy for a
strongly correlating liquid. Moreover, the difference term is
similarly expressed in terms of the corresponding energy dif-
ference, W−WIS=��U−eIS�. Taking averages over the �pos-
sibly nonequilibrium, although we assume equilibrium
within a given potential-energy basin� ensemble, we expect
that �U−eIS� depends only on T and V �a slight eIS depen-
dence can appear in � since this is slightly state-point depen-
dent�. Thus it follows that p can be reconstructed from a
knowledge of �average� eIS, V, and T, without any assump-
tions about the nature of the ISs visited. In particular, no
conclusion can be drawn regarding the latter. The failure of
the pressure reconstruction in the case of water23 is not sur-
prising since water models are generally not strongly corre-
lating �which as we saw in Paper I is linked to the existence
of the density maximum�.

D. Biomembranes

A completely different area of relevance for the type of
correlations reported here relates to the recent work of He-
imburg and Jackson,35 who proposed a controversial new
theory of nerve signal propagation. Based on experiment and
theory they suggest that a nerve signal is not primarily elec-
trical but a soliton sound wave.36 Among other things this
theory explains how anaesthesia works �and why one can
dope people with the inert gas xenon�: anaesthesia works
simply by a freezing-point depression that changes the mem-
brane phase transition temperature and affects its ability to
carry the soliton sound wave. A crucial ingredient of the

theory is the postulate of proportionality between volume
and enthalpy of microstates, i.e., that their thermal equilib-
rium fluctuations should correlate perfectly. This should ap-
ply even through the first-order membrane melting transition.
The theory was justified in part from previous experiments
by Heimburg showing proportionality between compressibil-
ity and specific heat through the phase transition.37 The pos-
tulated correlation—including the claim that is survives a
first-order phase transition—fits precisely the pattern found
in our liquid simulations.

By re-examining existing simulation data38,39 as well as
carrying out extensive new simulations,40 we have investi-
gated whether the correlations are also found in several
model membrane systems, five of which are listed in Table
III. The simulations involved a layer of phospholipid mem-
brane surrounded by water, in the L� phase �that is, at tem-
peratures above the transition to the gel-state�, at constant p
and T. When p, rather than V, is constant, the relevant quan-
tities that may correlate are energy and volume. As with
viscous liquids �Sec. III B� and the square well system �Pa-
per I�, time averaging is necessary for a correlation to
emerge, where now

�E�t� � �vol�V�t� . �110�

When an averaging time of 1 ns is chosen, a significant
correlation emerges, with correlations between 0.8 and 0.9
�Table III; note these REV values fall slightly short of our
criterion of 0.9 for “strong correlations”�. The time series of
time-averaged normalized E and V for one case are shown in
Fig. 11. The necessity of time averaging stems from the pres-
ence of water, which we know does not exhibit strong cor-
relations. Since the membrane dynamics are much slower
than those of the water, they can be isolated by time
averaging.

IV. CONCLUSIONS AND OUTLOOK

In Paper I and this work we have demonstrated several
cases of strongly correlating liquids and some cases where
the correlation is weak or absent �at least under normal con-
ditions of pressure and temperature�. An important next step
is to continue to document the existence or nonexistence of
correlations, particularly in different kinds of model systems,
such as nonpair potential systems and systems with interac-
tions computed using quantum mechanics �e.g., by density
functional theory�. It is noteworthy in this respect that after

TABLE III. Data from NpT simulations of fully hydrated phospholipid
membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine �DMPC�, 1,2-
dimyristoyl-sn-glycero-3-phospho-L-serine with sodium as counter ion
�DMPS-Na�, hydrated DMPS �DMPSH�, and DPPC �Refs. 40 and 44�. The
columns list temperature, correlation coefficient between volume and en-
ergy, average lateral area per lipid, simulation time in equilibrium, and total
simulation time.

T �K� REV Alip �Å2� t �ns� ttot �ns�

DMPC 310 0.885 53.1 60 114
DMPC 330 0.806 59.0 50 87
DMPS-Na 340 0.835 45.0 22 80
DPPC 325 0.866 67.3 13 180
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suitable time averaging the correlations may appear in sys-
tems where they are otherwise unexpected. One example was
the square-well �SQW� case, where the correlation was be-
tween the time-averaged virial and potential energy. In the
case of viscous liquids time averaging allowed a correlation
to appear between the more accessible energy and pressure,
while for the biomembranes it made it possible to remove the
nonstrongly correlating contributions from the water. In all
cases time averaging is relevant because of a separation of
time scales: the SQW system because the time scale over
which the average number of neighbors changes is long com-
pared to the time between collisions; viscous liquids because
the vibrational dynamics �which includes the kinetic contri-
butions� is fast compared to the slow configurational dynam-
ics; biomembranes because the membrane dynamics is slow
compared to those of the water. Note that in this case it was
necessary to consider an NpT ensemble and study the corre-
lations between energy and volume because only a part of
the system is strongly correlating, and this part cannot be
constrained to a particular volume. It is worth noting that
even with fixed volume, the correlation coefficient depends
on whether the ensemble is NVT or NVE, although the
strongly correlating limit of R→1 is independent of
ensemble.

A point which has been mentioned, but which is worth
emphasizing again, is that the replacement of the potential by
an appropriate inverse power law can only reproduce the
fluctuations, and not the mean values of �potential� energy
and virial, nor their first derivatives with respect to T and V.
These determine the equation of state, in particular features
such as the van der Waals loop that are absent in a pure
power-law system, even if changes in the exponent are al-
lowed. The generalization to the extended effective inverse
power-law approximation, however, allows in principle such
features to be described.

Finally, consider again viscous liquids, which are typi-
cally deeply supercooled. The most common way of classi-
fying them involves the fragility parameter introduced by
Angell,41 related to the departure from Arrhenius behavior of

the temperature dependence of the viscosity. Strong liquids,
having the most Arrhenius behavior, have traditionally been
considered the easiest ones to understand because Arrhenius
temperature dependence is well-understood. However it may
well be that strongly correlating liquids are in fact the
simplest.42 The connection with the long-discussed question
of whether a single-order parameter describes highly viscous
liquids has been discussed briefly in Sec. III B and is dis-
cussed further in Ref. 21. As an example, a direct application
of the strongly correlating property concerns diffusion in su-
percooled liquids. Recent work of Coslovich and Roland43

has shown that the diffusion constant in viscous binary
Lennard-Jones mixtures may be fitted by an expression D
=F�	� /T�, where � reflects the effective inverse power of the
repulsive core. “Density scaling” has also been observed
experimentally.46–49 It is natural, given the results of Coslov-
ich and Roland, to hypothesize that the scaling exponent is
connected to pressure-energy correlations, and in Ref. 4 it
was conjectured that density scaling applies if and only if the
liquid is strongly correlating. We have recently studied the
relationship between the two quantitatively50 and have found
that �1� density scaling does indeed hold to the extent that the
liquids are strongly correlating, and �2� the scaling exponent
is given accurately by the slope � of the correlations �hence
our use of the same symbol�. This finding supports the con-
jecture that strongly correlating liquids may be simpler than
liquids in general.

In summary, the property of strong correlation between
the equilibrium fluctuations of virial and potential energy
allows a new way to classify liquids. It is too soon to tell
how fruitful this will turn out in the long term, but judging
from the applications briefly presented here, it seems at least
plausible that it will be quite useful.
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Abstract

This paper reports all-atom computer simulations of five phospholipid
membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus
on the thermal equilibrium fluctuations of volume, energy, area, thickness,
and order parameter. For the slow fluctuations at constant temperature
and pressure (defined by averaging over 0.5 nanosecond) volume and en-
ergy exhibit strong correlation. These quantities on the other hand do
not correlate significantly with area, thickness, or order parameter. The
correlations are mainly reported for the fluid phase, but we also give re-
sults for the ordered (gel) phase of two membranes, showing a similar
picture. The strong correlations reported here confirm an assumption of
a recent theory for nerve signal propagation proposed by Heimburg and
Jackson (2005). The cause of the observed strong correlations is identified
by splitting volume and energy into contributions from tails, heads, and
water, showing that the slow volume-energy fluctuations derive from the
tail region’s van der Waals interactions and are thus analogous the sim-
ilar strong correlations recently observed in computer simulations of the
Lennard-Jones and other simple van der Waals type liquids.

In 2005 Heimburg and Jackson showed that biomembranes may carry soli-
tonic sound waves with a maximum amplitude and a minimum velocity of the
solitons that is close to the propagation velocity in myelinated nerves [1]. Their
paper concluded: “It would be surprising if nature did not exploit these fea-
tures.” Subsequent works by the same authors argue directly that nerve sig-
nals are not primarily electrical, but solitonic sound waves carried by the nerve
cell membrane [2]. The conventional wisdom is that nerve signals propagate
via electrical current as formulated in the Hodgkin-Huxley theory [3]. The
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Heimburg-Jackson theory, which is obviously controversial, explains anaesthe-
sia as a straightforward effect of melting-point depression of the order-disorder
transition that biomembranes (for otherwise biologically unknown reasons) have
at temperatures close to physiological temperatures [4].

The Heimburg-Jackson nerve-signal theory motivated this study. An element
of the theory is the assumption that volume and enthalpy correlate strongly in
their thermal equilibrium fluctuations, at least as regards the slow parts of these
fluctuations. This assumption was justified by observations that membrane spe-
cific heat and compressibility are proportional in their temperature dependence,
even across the phase transition [5, 6]. Such a postulated strong correlation be-
tween thermodynamic variables of microstates is quite unusual in the statistical
mechanical literature. Below we present first results from extensive computer
simulations of different phospholipid membranes performed in order to investi-
gate whether strong volume-energy correlations are observed and – if they are
– what causes them.

Recently we studied equilibrium thermodynamic fluctuations of much sim-
pler systems, namely various model liquids like the standard Lennard-Jones
(LJ) liquid and similar systems [7, 8, 9, 10]. In many such simple liquids one
finds a strong correlation between equilibrium fluctuations of the virial W and
the potential energy U , when fluctuations are studied at constant particle num-
ber N , constant volume V , and constant temperature T (the so-called NV T
ensemble [11]). Recall [12] that the virial W = W (t) gives the non-ideal con-
tribution to the instantaneous pressure p = p(t) via the defining equation:
p(t)V = (2/3)NkBT (t) + W (t) where T (t) is the instantaneous temperature
defined via the instantaneous kinetic energy. The virial determines the part
of the pressure that comes from interactions, i.e., in addition to the ideal gas
contribution; the virial is a function of the particle positions [12]. For the LJ
liquid, as well as for a united-atom toluene model, a dumbbell model, the Kob-
Andersen binary LJ liquid [13], and other liquids, W and U correlate better
than 90% in their equilibrium fluctuations. This reflects an effective inverse
power-law potential dominating fluctuations, as detailed in Refs. [9, 10]. Liq-
uids with poor W − U correlation include water and methanol [8]. In these
cases the correlations are ruined by the hydrogen bonds that are conventionally
modelled via Coulomb forces – the existence of competing interactions prevents
strong W − U correlation in hydrogen-bonded liquids.

For liquids with time-scale separation like highly viscous liquids, strong
W − U correlations are particularly significant. Thus it has been shown [7, 14]
that viscous liquids with strong W − U correlations are close to being ”single-
order-parameter liquids” in the classical Prigogine-Defay sense [15]. This im-
plies that complex frequency-dependent thermoviscoelastic response functions
like the isobaric/isochoric dynamic specific heat, dynamic thermal expansion co-
efficient, dynamic compressibility, etc, are all given by a single function [14]. In
particular, these cannot “decouple” [16] from one another – they must all exhibit
relaxations in the same frequency range. It has also been shown that strongly
correlating viscous liquids obey density scaling, i.e., that if the relaxation time
τ is measured at different temperatures and density ρ, τ is a unique function
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of ρx/T [17]. Moreover, the exponent x may be determined from studies of
W − U correlations at a single state point [18]. Finally, it was recently found
that strongly correlating viscous liquids have much simpler ageing properties
than do viscous liquids in general (unpublished).

Fluctuations are ensemble dependent, of course, and one may ask what hap-
pens if fluctuations are instead studied in the ensemble of constant temperature
and pressure (NpT ensemble). In this case virial fluctuations are not interest-
ing, but in the NpT ensemble there are equally strong correlations for simple
liquids between the fluctuations of volume and potential energy [7]. This is the
ensemble used below for studying biomembrane thermodynamic fluctuations.

Based on the findings for simple model liquids and the Heimburg-Jackson
theory we found it would be interesting to simulate phospholipid membranes in
order to investigate whether the Heimburg-Jackson assumption of strong V −U
correlations is confirmed even for such complex systems. A phospholipid has
both van der Waals interactions between its acyl chains and hydrogen bonds in
the head region. Similarities to simple liquids are not at all obvious, and the
microscopic origin of the enthalpy/volume correlations tentatively derived from
experiments [5, 6] is not trivial.

Because of the large amount of water in the system one does not expect
strong instantaneous correlations of phospholipid membrane thermodynamic
fluctuations. The Heimburg-Jackson theory, however, in reality only relates to
strong correlations of the biomembrane’s slow degrees of freedom (on millisecond
time scales), and so do the experiments they quote indicating strong correlations
[5, 6]. This is analogous to the situation for highly viscous liquids where time-
scale separation between the fast, vibrational degrees of freedom and the much
slower configurational is also essential.

Phospholipids are the major constituent of biological membranes. Close to
physiological temperature membranes undergoes a transition from a disordered
phase (Lα phase) to an ordered phase (Lβ) [4, 19]. Below we evaluate the
strength of V −U correlations for both the disordered and ordered phases with
main focus on the high-temperature disordered phase. The correlation strength
was calculated on a range of time scales. We show that V −U correlate strongly,
but only on long time scales. We furthermore investigated how well membrane
area as well as membrane order-parameter fluctuations correlate with V and
U fluctuations; such correlations are generally poor. Finally, the cause of the
correlations is identified by splitting volume as well as energy into contributions
from tails, heads, and water: The slow, strongly correlating V −U fluctuations
are shown to derive from the tails that are dominated by van der Waals in-
teractions, thus establishing a conceptual link to the strong correlations of the
slow pressure-energy fluctuations – the virial/potential energy correlations – of
simple van der Waals liquids [8].
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Simulations details

Details of the seven membrane simulations performed are listed in Tabel 1.
The following abbreviations are used: DMPC-f: a fully hydrated di-myristoyl-
phosphatidyl-choline membrane in the fluid phase. DMPC-g: a fully hydrated
di-myristoyl-phosphatidyl-cholin membrane in the ordered phase. DPPC-f: a
fully hydrated di-palmitoyl-phosphatidyl-choline membrane in the fluid phase.
DPPC-g: a fully hydrated di-palmitoyl-phosphatidyl-choline membrane the or-
dered phase. DPPG: a fully hydrated di-palmitoyl-phosphatidyl-glycerol mem-
brane in the fluid phase with calcium counter ions. DPPS: a fully hydrated di-
myristoyl-phosphatidyl-serine membrane in the fluid phase with calcium counter
ions. DMPSH: a fully hydrated and protonated di-myristoyl-phosphatidyl-serine
membrane in the fluid phase.

In all simulations a time step of 1.0 fs was used. Temperature and pressure
were controlled by the Langevin thermostat (damping coefficient: 5 ps−1) and
Nose-Hoover Langevin barostat (anisotropic regulation; piston oscillation time:
100 fs; damping time: 50 fs) [11]. Electrostatic interactions were evaluated
using the Particle-Mesh-Ewald method [20, 21] with a grid spacing ∼ 1Å and
were updated every 4 fs. Van der Waals interactions were cut-off at 12 Å in
combination with a switching function starting at 10 Å. Periodic boundary
conditions were applied in all three dimensions. Simulations were carried out
using NAMD [22].

The simulations of DMPC-f, DPPC-f, DPPG, DPPS, DMPS and DMPSH
started from configurations taken from Refs. [23, 24, 25]. Initial configurations
of DMPC-g and DPPC-g were built from a membrane simulated by Venable
and co-workers [26]. The acyl chains remain in an ordered structure (as shown
on Fig. 1), and they are referred to as ”ordered“.

Thermal equilibrium was ensured by monitoring the membrane area; only
trajectories with no drift (compared to the thermal fluctuations) were used in
the data analysis. The length of the equilibrium trajectories is listed in Table 1
in the column under tprod. The importance of equilibrium should be emphasized,
since an apparent strong correlation would appear if volume and energy relax
from some (arbitrary) out-of-equilibrium state.

Results

The following collective quantities were evaluated every 0.5 ps: Potential energy
U , simulation box volume V = XY Z (where X, Y and Z are the box dimen-
sions), projected membrane area A = XY , box thickness Z, and average chain
order parameter 〈SCD〉ch. The latter parameter, which characterizes the overall
acyl-chain order [27], is defined as 〈SCD〉ch = | 〈 3

2 cos2(θCD)− 1
2

〉
ch
| where θCD

is the angle between the membrane normal and (~z) the C-H bond of a given
methylene group, and 〈. . .〉ch denotes an average over all methylene groups in
all chains.

First, we consider the fluid DMPC-f membrane. The instantaneous fluctu-
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Table 1: Overview of simulations details and results

(A) System abv. (phase) tsim [ns] tprod [ns] Nlip T [K] Nwat/Nlip
DMPC-f (fluid) 151 121 128 330 33
DMPC-g (ordered) 65 36 64 286 33
DPPC-f (fluid) 180 124 72 325 29
DPPC-g (ordered) 78 48 64 304 33
DMPG (fluid) 149 49 128 330 33
DMPS (fluid) 139 49 128 340 36
DMPSH (fluid) 136 35 128 340 37

(B) System abv. (phase) RŪV̄ γ RŪŪt
RŪĀ RV̄ Ā RĀS̄CD

RŪS̄CD
RV̄ S̄CD

DMPC-f (fluid) 0.77 6.7 0.82 0.50 0.57 -0.75 -0.49 -0.54
DMPC-g (ordered) 0.47 4.3 0.31 0.02 0.05 -0.64 0.12 0.14
DPPC-f (fluid) 0.87 7.1 0.89 -0.29 -0.36 0.00 -0.61 -0.71
DPPC-g (ordered) 0.75 4.6 0.71 -0.16 0.12 -0.67 0.09 -0.07
DMPG (fluid) 0.82 5.9 0.80 0.41 0.40 -0.76 0.01 0.08
DMPS (fluid) 0.59 5.3 0.64 0.30 0.28 -0.71 0.04 0.20
DMPSH (fluid) 0.78 9.2 0.84 0.43 0.51 -0.50 0.05 0.14

(A) tsim: Total simulation time in nanoseconds. tprod: Length of production
run in nanoseconds (only membranes in quasi-equilibrium, i.e., with no de-
tectable drift in the area per molecule, were included in the data analysis);
Nlip: Number of lipid molecules; T : Temperature in Kelvin; Nwat/Nlip: Num-
ber of water molecules per lipid molecule. (B) RŪV̄ : Energy-Volume correla-
tion coefficient (see Eq. 1); γ: Energy-volume scaling factor in Å3 mol/kcal
(see Eq. 13); RŪŪt

: Energy-“Energy of acyl groups” correlation coefficient.
RŪĀ: Energy-Area correlation coefficient; RV̄ Ā: Volume-Area correlation coef-
ficient. RĀS̄CD

: Area-“chain order-parameter” correlation coefficient; RŪS̄CD
:

Energy-“chain order-parameter” correlation coefficient; RV̄ S̄CD
: Volume-“chain

order-parameter” correlation coefficient.

5
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Figure 1: Snapshots of DMPC membrane in the fluid phase (DMPC-f; top)
and in the ordered phase (DMPC-g; bottom). The red atoms are the oxygen
atoms of water molecules; hydrogen atoms were removed for visual clarity (but
included in the simulations). The green strings are the acyl chains. The frame
indicates the periodic boundary box.

6
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ations of volume and energy do not show any significant correlation (data not
shown). This is not surprising, since a significant part of the simulation box is
water and water is known not to have such correlation [8]. However, if fluctu-
ations are averaged over time windows of 0.5 nanosecound, volume and energy
are strongly correlated as shown in Fig. 2A for DMPC-f. This is quantified by
the correlation coefficient,

RŪV̄ =
〈∆Ū∆V̄ 〉√

〈(∆Ū)2〉〈(∆V̄ )2〉 = 0.77, (1)

where the bar here and henceforth indicates a 0.5 ns average. R = 0 corresponds
to no correlation, |R| ∼= 1 corresponds to strong correlation. For comparison
the correlation coefficient without averaging (RUV ) is 0.35.

One possible explanation for the observed strong correlation could be that
the order of the acyl chains is the single controlling parameter of the fluctuations.
If chains, as a result of a thermal fluctuation, become more ordered, one expects:
decrease of energy, volume, and area, but increase of thickness and 〈SCD〉ch.
We find RŪĀ = 0.50 and RV̄ Ā = 0.57. The correlation has the right sign
but is significantly lower. The same is the case for Z and 〈SCD〉ch. Fig. 2B
shows the full correlation matrix. Clearly a single parameter description is not
sufficient. We need two parameters to describe the thermodynamic fluctuations:
one parameter controlling V and U and one “geometrical” parameter controlling
A, Z, and 〈SCD〉ch.

Table 1 shows that the DMPC-f, DPPC-g, DPPC-g, DMPG, DMPS, and
DMPSH have strong volume-energy correlation (R ≥ 0.75). The volumes
DMPC-g and DMPS show less correlation with energy – a point returned to
below.

The term “slow fluctuations” has so far been arbitrary, defined via the 0.5
ns averaging time window. A more general approach is to investigate the time-
dependent correlation coefficient

ΓUV (t) =
〈∆U(0)∆V (t)〉√〈∆U(0)∆U(t)〉〈∆V (0)∆V (t)〉 . (2)

Similarly, one defines the time-dependent energy-area correlation coefficient
ΓUA(t).

Fig. 3 shows ΓUV (t) and ΓUA(t) for all seven investigated system. In con-
trast to ΓUA(t) we observe strong correlation on slow time scales for ΓUV (t)
where this function approaches unity. In the next section the slow parts of the
volume and energy fluctuations are investigated via the autocorrelation func-
tions 〈∆V (0)∆V (t)〉 and 〈∆U(0)∆U(t)〉.

Locating the slow volume and energy fluctuations

A membrane is a highly anisotropic system, and it is reasonable to divide it
into regions. In the following three regions are defined: t, h, and w, where t
(tail) refers to the hydrophobic acyl-chain atoms (i.e., atoms of methylene- and

7
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Figure 2: Correlations in the slow thermal equilibrium fluctuations of volume
and energy (top) and correlation matrix for the DMPC-f membrane (bottom).
The normalized fluctuations of volume and potential energy shown are aver-
aged over time intervals of 0.5 nanosecond. Data are shifted and scaled such
that the average value is zero and the standard deviation is unity. A significant
correlations is observed quantified by the correlation coefficient, RŪV̄ = 0.77
(this strong correlations can be associated to the acyl chains as seen by the
similarities between this figure and the below Fig 5). The bottom panel rep-
resents the absolute values of the elements of the correlation matrix of energy,
volume, membrane area, thickness and the average chain order-parameter where
dark red illustrates strong correlation. Membrane area, thickness, and average
chain order-parameter are strongly correlated, but these quantities only corre-
late weakly with energy and volume. Similar results are found for the other
fluid membranes (except for DMPC-g and DMPS where the energy-volume cor-
relation is only 0.47 and 0.59, respectively), see Table 1.
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methyl groups in the acyl-chain), h (head) refers to the hydrophilic atoms (the
remaining of the lipid atoms), and w refers to the water atoms.

To identify the origin of the slow volume fluctuations, we construct Voronoi
polyhedra [28] of heavy atoms (i.e., ignoring hydrogen) and sum the Voronoi
volumes for the regions t, h and w. In this way the total volume of the simulation
box is divided into three terms,

V = Vt + Vh + Vw . (3)

The auto-correlation function of the volume in Eq. 2 can now be split into a
sum of three auto- and three cross-correlation functions,

〈∆V (0)∆V (t)〉 = 〈∆Vt(0)∆Vt(t)〉
+ 〈∆Vh(0)∆Vh(t)〉
+ 〈∆Vw(0)∆Vw(t)〉
+ 2〈∆Vt(0)∆Vh(t)〉
+ 2〈∆Vt(0)∆Vw(t)〉
+ 2〈∆Vh(0)∆Vw(t)〉. (4)

Fig. 4A shows these six functions for the DMPC-f membrane. The only
nonvanishing function at long times (responsible for the slow fluctuations) is
the auto-correlation function of the hydrophobic (tail) part of the membrane,
〈∆Vt(0)∆Vt(0)〉. This is quantified by RV̄ V̄t

= 0.94 being close to unity.
In the simulation, the potential energy of the system consists of a sum of

Lennard-Jones terms, Coulomb pair energy terms, and intramolecular binding-
energies:

U = U intra +
1
2

∑
i

∑
j6=i

U coul
ij +

1
2

∑
i

∑
j6=i

ULJ
ij . (5)

Again we split the total potential energy into contributions from regions of tails,
heads and water,

U = Ut + Uh + Uw (6)

where

Ux = U intra
x +

1
2

∑
i = x

∑
j = all

U coul
ij +

1
2

∑
i = x

∑
j= all

ULJ
ij , (7)

with x either tail, head, or water,

ULJ
ij = 4εij((σij/rij)12 − (σij/rij)6) , (8)

and

U coul
ij = qiqj/(4πε0rij) . (9)

9
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As for the volume, the auto-correlation function of the energy fluctuations in
Eq. 2 is also split into a sum of three auto- and three cross correlation functions,

〈∆U(0)∆U(t)〉 = 〈∆Ut(0)∆Ut(t)〉
+ 〈∆Uh(0)∆Uh(t)〉
+ 〈∆Uw(0)∆Uw(t)〉
+ 2〈∆Ut(0)∆Uh(t)〉
+ 2〈∆Ut(0)∆Uw(t)〉
+ 2〈∆Uh(0)∆Uw(t)〉. (10)

Fig. 4B shows the six auto- and cross correlation functions of Ut, Uh and
Uw. Again, the slow fluctuations are dominated by the tail region. It should be
noted, though, that the head-head and water-water auto-correlation remaining
functions are not close to vanishing, as was the case for the volume fluctuations.
This is quantified by RŪŪt

= 0.82 (Tabel 1) not being as close to unity as
RV̄ V̄t

= 0.94.
Fig. 4C shows the auto- and cross-correlation functions corresponding to a

further splitting of the tail energy into “intramolecular interactions”, “Coulom-
bic interactions” and “van der Waals interactions” given in Eq. 7. The van der
Waals energies dominate the energy fluctuations of the tail region.

The above analysis shows that the slow energy-volume correlation originate
from van der Walls interactions in the tail region; thus:

∆V̄t ∝ ∆ŪLJt , (11)

where
ULJt =

1
2

∑
i=tails

∑
j=all

ULJ
ij (12)

This is in good agreement with the findings for simple strongly correlations
liquids [9, 10]. It should be remembered, however, that we discarded some non-
vanishing energy correlation functions. If we correlate the slow fluctuations (by
doing a 0.5 ns average) of the Voronoi volume of the acyl chains and the van der
Waals energy of tails, we find a correlation coefficient of RV̄tŪLJ

t
=0.87 (Fig. 5).

The same number for the fluctuations for whole simulation box was RV̄ Ū =0.77.
The loss of correlation is associated with the energy terms neglected. Consistent
with this, Table 1 shows a general correlation between RV̄ Ū and RŪŪt

.
It is convenient to define a volume-energy scaling factor via

γ =

√
〈(∆V )2〉
〈(∆U)2〉 . (13)

For DMPC the experimentally found volume-energy scaling factor, γ = (7.788±
0.110)×10−4 mL/J = (5.418±0.077) Å·mol/kcal [6], is in good agreement with
the scaling factors given in Table 1.
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Figure 3: Time-dependent correlation coefficient Γ(t) of volume-energy (left)
and area-energy (right) of membranes in the fluid phase (the definition of Γ(t) is
given on the y-axis). The fast fluctuations of volume and energy, e.g. t < 10−11

second, correlate only weakly, whereas the slow fluctuations, e.g. t ' 10−9

second, are strongly correlated. The area and energy fluctuations are only
weakly correlated.

11
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Figure 4: Six auto- and cross-correlations for the DMPC-f membrane. Panel A:
Volume correlations of the three regions (Eq. 4): tails (methylene and methyl
groups), heads, and water. From these correlations it can be concluded that the
slow volume fluctuations are dominated by the acyl chains. Panel B: Energies of
the three regions (Eq. 10). Again, slow fluctuations are dominated by the tail
region. Panel C: Energy correlations split into intramolecular, Lennard-Jones
(LJ) and Coulombic energies (Eq. 6).
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Figure 5: Normalized fluctuations of Voronoi volume and van der Waals energy
of the acyl chains of the DMPC-f membrane. Data are shifted and scaled so
the average value is zero and the standard deviation is unity. The correlation is
strong with a correlation coefficient of 0.87. Note the similarity to Fig. 2A.
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Conclusions

This paper reports a study of biomembranes’ thermodynamic equilibrium fluc-
tuations. On the long time scale we identify strong volume-energy correlations
of a kind that were previously only observed for simple model liquids [7, 8].
These correlations are mainly documented in the fluid phase, but we also show
that they exist in the membrane’s gel phase.

It may seem surprising that a complex system like a biomembrane exhibits
such strong thermodynamic correlations. The identification of the origin of the
correlations as deriving from the van der Waals interactions of the hydrophobic
part of the membrane, however, points to a common origin of strong thermody-
namic correlations in simple van der Waals liquids and biomembranes. This is
consistent with the finding that there are strong energy-volume correlations in
both fluid and gel phases: The correlations do not depend on the degree of chain
order, as for simple liquids where the strong correlations survive crystallization
[9, 10].

Regarding the Heimburg-Jackson nerve signal theory, our findings largely
confirm the assumption of this theory that volume and energy (enthalpy) cor-
relate for microstates. We find a strong correlation only on the nanosecond and
longer time scales, which are however the relevant times for nerve signals. One
caveat is that, although we do find strong energy-volume correlations in both
the fluid and gel phases, the proportionality constant γ is not the same in both
phases (Table 1). This shows that the nature of the correlations changes when
passing the phase transition, in contrast to our findings for crystallization of the
standard Lennard-Jones liquid [9, 10]. More work is needed to clarify the cause
of this difference between biomembranes and simple liquids.
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Stability of supercooled binary liquid mixtures
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Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
(Dated: January 6, 2009)

The supercooled Kob-Andersen binary Lennard-Jones (KABLJ) mixture crystallizes partially in
lengthy Molecular Dynamics simulations by forming pure FCC crystals of the majority compo-
nent. The general thermodynamic and kinetic stability of supercooled binary mixtures is discussed,
emphasizing the importance of negative mixing enthalpy whenever present. Based on this a modifi-
cation of the KABLJ mixture is proposed that is less prone to crystallization and faster to simulate;
this is obtained by removing the like-particle attractions by switching to Weeks-Chandler-Andersen
type potentials while maintaining the unlike-particle attraction.

I. INTRODUCTION

As computers get faster, simulations of the highly vis-
cous liquid phase preceding glass formation become in-
creasingly realistic. In this context it is nice to have a
standard model system, something like the Ising model
for critical phenomena. For several years binary binary
Lennard-Jones (BLJ) mixtures have served this purpose
– in particular the Wahnström and Kob-Andersen sys-
tems [1, 2], because they are easy to simulate and were
never found to crystallize. The Kob-Andersen BLJ con-
sists of two types of Lennard-Jones particles, 80% large
(A) particles and 20% small (B) particles. The BLJ po-
tentials are modifications of the potentials devised by
Weber and Stillinger [3], who constructed the pair poten-
tials for the binary mixture based of physical-chemical
data for the Ni80P20 alloy. The Kob-Andersen poten-
tials describe a strongly non-ideal mixture due to an AB
attraction that is three times stronger than the BB at-
traction. This ensures a large negative mixing enthalpy
(and energy), which suppresses crystallization into pure
A crystals as detailed below.

Recently, both the Wahnström (Wa) and the Kob-
Andersen (KA) systems were shown to crystallize in
lengthy computer runs [4]. This motivated the present
paper that has three purposes. First, we briefly review
the general theory of thermodynamic and kinetic stabil-
ity of supercooled binary mixtures (Sec. II). Secondly, we
detail the crystallization of the Kob-Andersen systems
(Sec. III), while the crystallization of the Wahnström
liquid will be described elsewhere [5]. Finally, we suggest
a modification of the KA binary system that is more sta-
ble and faster to simulate; in fact, we have not been able
to crystallize the new system even in month long simula-
tions. The idea is to keep the KA system’s large negative
mixing enthalpy, but remove the AA and BB attractions
by adopting Weeks-Chandler-Andersen (WCA) type po-
tentials between like particles (Sec. IV). Section V gives
a brief discussion.

II. GENERAL TREATMENT

Consider a binary mixture of NA solvent (A) parti-
cles and NB solute (B) particles, with total number of
particles N = NA + NB . The thermodynamic stability
of this system against crystallization is expressed by the
melting temperature of a pure A crystal, Tfus,A, as a
function of the concentration of A particles. The latter
quantity is conveniently expressed in terms of the frac-
tion xB = NB/N of B particles (xA + xB = 1). We
consider the usual case of externally controlled tempera-
ture T and pressure p. At the melting temperature of the
pure A crystalline phase in the AB mixture, the chemi-
cal potential of the A particles in the crystal equals the
chemical potential of the A particles of the liquid mix-
ture. The chemical potential is the Gibbs free energy per
particle. The change in Gibbs free energy per A particle
at melting, ∆Gtrans,A can be divided into two therms,
∆Gfus,A and ∆Gmix,A, where ∆Gfus,A is the change
in Gibbs free energy per A particle upon melting an A
crystal into pure A liquid, and ∆Gmix,A is the change
in Gibbs free energy per A particle going from pure to
mixed liquid. The melting temperature Tfus,A is deter-
mined by

∆Gtrans,A = ∆Gfus,A(Tfus,A) +∆Gmix,A(Tfus,A) = 0 .

(1)
The case of pure A (xB = 0) will be denoted by an

asterisk, thus T ∗fus,A is the melting point of the pure A
crystal into pure A liquid. In this case ∆Gtrans,A =
∆G∗fus,A and since G = H − TS, one has

∆H∗
fus,A − T ∗fus,A∆S∗fus,A = 0 (2)

where here and henceforth all thermodynamic quantities
are per A atom. When deriving the standard expression
for the freezing point depression one makes the approx-
imation that crystal and liquid have the same specific
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2

heats, i.e that ∆Hfus,A and ∆Sfus,A are temperature
independent, or from Eq. (2)

∆Hfus,A − T ∗fus,A∆Sfus,A = 0 (3)

In the general case where xB 6= 0 one has from (1)

∆Hfus,A − Tfus,A∆Sfus,A = −∆Gmix,A (4)

and by using Eq. (3) to eliminate ∆Sfus,A in Eq. (4)
one obtains

∆Tfus,A
T ∗fus,A

= −
∆Gmix,A
∆Hfus,A

(5)

for the melting point depression ∆Tfus,A = T ∗fus,A −
Tfus,A. In the standard textbook treatment one assumes
that ∆Hmix,A = 0 and that the mixing entropy is ideal,
i.e., that the mixing entropy divided by N = NA + NB

is given by ∆Smix = −kB [xA ln(xA)+xB ln(xB)]. This
expression separates into a contribution from the A par-
ticles and one from the B particles. Per A particle we
thus have ∆Smix,A = −kB ln(xA) = −kB ln(1 − xB).
In the limit xB → 0 Eq. (5) under these assumptions
reduces to the well-known expression

∆Tfus,A
T ∗fus,A

∼=
kBTfus,A
∆H∗

fus,A
xB (6)

More generally, ∆Hmix,A = 0 does not apply – in
fact for the Kob-Andersen liquid the mixing enthalpy is
large (and negative) and this term cannot be ignored.
For small concentrations of the solute, xB, the mixing
entropy is still given by ∆Sideal mix,A. For this more
general case Eq. (5) becomes

∆Tfus,A
T ∗fus,A

= −
∆Hmix,A + kBTfus,A ln(xA)

∆Hfus,A
(7)

A negative mixing enthalpy (i.e. exotherm) clearly im-
plies a further melting point depression beyond that of
the traditional treatments. If there is a large negative
mixing enthalpy, this effect is important.

The stability of a supercooled liquid mixture de-
pends not only on its absolute (thermodynamic) stability
against crystallization, but is also affected by kinetic ef-
fects. Thus the less supercooled the liquid is, the larger
is the critical nucleus and the more stable is the liquid.
This means that it takes longer time before a critical nu-
cleus is generated by a thermal fluctuation, i.e., the su-
percooled liquid is more stable. At a given temperature
the supercooled liquid is more stable the more negative
∆Gmix,A becomes. To see this divide the creation of a
crystal nucleus of pure A particles in the mixture

NA(mix)→ NA(crystal, xA = 1) (8)

into two steps:

NA(mix) → NA(liquid, xA = 1)
NA(liquid, xA = 1) → NA(crystal, xA = 1) . (9)

The first reaction is a density fluctuation from the mix-
ture to a pure liquid domain of A particles, the second
is crystallization. The crystallization is (qualitatively)
described by classical nucleation theory (CNT). In its
simplest formulation the number of particles, N∗, in the
critical nucleus is given [6] by

N∗ =
32πγ3

∞
3ρ2

s∆µ3
A

, (10)

where γ∞ is the solid-liquid surface tension, ρs is the
crystal number density and ∆µA is the change in Gibbs
free energy per A particle by going from the crystal to
pure A liquid. When the creation of a pure A crys-
tal takes place in a mixture, the lowering of Gibbs
free energy by the crystallization process is reduced by
δµ = −∆Gmix,A = −∆Hmix,A + Tfus,A∆Smix,A ≈
−∆A,mixupot − kBTfus,A ln(xA). Since the size of the
critical nucleus N∗ varies as N∗ ∝ (∆µA)−3, when
∆µA is replaced by ∆µA − δµA to lowest order the
change in critical nucleus size δN∗ is given by δN∗/N∗ =
3δµA/∆µA, thus

δN∗

N∗ = − 3
∆A,mixupot(xA) + kBTfus,A ln(xA)

∆µA
.

(11)
Both the negative mixing energy and the mixing entropy
terms tend to increase the size of the critical nucleus.
Note, however, that if the crystallization is instead to,
e.g., an AB-crystal from an B-rich mixture with positive
AB binding energy, the size of the critical nucleus is re-
duced. This prediction agrees with our simulations of
crystallization in supercooled mixtures of varying com-
position.

The above stability considerations indicate that if a bi-
nary mixture crystallizes into, e.g., an AB-type crystal, a
negative mixing energy will enhance the tendency of crys-
tallization by decreasing the size of the critical nucleus.
Confirming this, we find that increasing the fraction of B
particles to xB=0.5 for KA-type BLJ mixtures results in
systems that more quickly crystallize into an AB (CsCl
structure) crystal. This is consistent with the results of
Fernandez and Harrowell [7], who found that the T = 0
equilibrium phase of the KABLJ mixture consists of co-
existing pure A (FCC) and AB (CsCl structure) crystals.
The mixing energy term also plays an important role for
the KA mixture and here we observe (see later) that the
nucleation time depends on details in the truncation of
the pair potentials in agreement with Eq. (11).
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III. THE WAHNSTRÖM AND THE
KOB-ANDERSEN BINARY LENNARD-JONES

MIXTURES

The simplest case of a realistic mixture is that given by
the semi-empirical Lorentz-Berthelot (LB) rules [8] relat-
ing the energy parameters σ and ǫ in the pair potentials
between the different species of the AB mixture:

σAB = (σAA + σBB)/2 (12)
ǫAB = √ǫAAǫBB (13)

These rules apply for atoms with weak dispersion attrac-
tions [9], and they work well for simple mixtures of for
instance noble-gas atoms [8], i.e., for interactions between
spherically symmetric atoms with unperturbed valence-
electron orbitals.

There are two standard models for highly viscous
supercooled binary mixtures, the model introduced by
Wahnström (WA) [1] and the model by Kob and Ander-
sen (KA) [2]. Both models involve Lennard-Jones poten-
tials (LJ).

uLJ(rij) = 4ǫij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(14)

between particle i and j. The WA model obeys the LB-
rules by having

σAB = (σAA + σBB)/2 (15)

with σBB = 1/1.2σAA and ǫAB = ǫAA = ǫBB = 1.
The KA model strongly disobeys the LB-rules: The LJ-
potential parameters for the KA mixture are σAB =
0.8σAA, σBB = 0.88σAA, ǫAB = 1.5ǫAA, and ǫBB =
0.5ǫAA. This results in a tendency for the small solute B
particles to “glue” to the A particles. This mixture has a
significant non-ideal mixing energy and it is considerably
more stable against crystallization than the WA mixture.

We have calculated [10] the melting point temperature
at constant pressure (pσ3

AA/ǫAA=10) for small solute
concentrations, xB, and using Eq. (7) for these two mod-
els. The result is shown in Figure 1. The melting point
depression by mixing is traditionally given at constant
pressure. Most MD simulations are, however performed
for isochores where Tfus,A(xB) depends on the partial
volumes of the species in the mixture.

As can be seen from the figure the negative mixing en-
ergy lowers the melting point temperature significantly.
The WA model is indeed more prone to crystallization
than the KA model and recently Pedersen and co-workers
reported crystallization of the WA model after lengthy
computer runs [5]. The crystal is the MgZn2 phase con-
sisting of particles in the ratio 1:2, different from the
1:1 ratio defining the Wahnström BLJ. Thus concentra-
tion fluctuations precede (or at least correlate with) crys-
tal formation. These findings inspired us to investigate

whether the more widely studied KA model also crystal-
lizes in lengthy computer runs.

We performed molecular dynamics simulations of 1000
(and 10000) particles of the standard Kob-Andersen bi-
nary Lennard-Jones liquid in the NVE and NVT ensem-
bles. The system was simulated at the density 1.2 in di-
mensionless units at varying temperatures. The standard
time-reversible leap-frog (NVT) algorithm [11] was used
with a time step of 0.005 (in Argon units: ≈ 10−14 s).
The software used has been described elsewhere [12]; it
utilizes a double sorting of neighbor particles that makes
it possible to simulate 1 µs within 2-3 days of computing
on a standard computer.

For temperatures above 0.45 no crystallization was de-
tected. In the temperature interval [0.39, 0.45] a suspi-
cious drop in pressure taking place typically after ≈ 108

time steps indicates that something is happening. It
turns out that the system phase separates such that the
A particles form fairly large regions with no B particles
present. Linked to this phase separation is a crystalliza-
tion of the A particles. Ten simulations were performed
in the [0.39, 0.45] temperature interval; after 4.×108 time
steps (≈ 4µs) eight of these ten simulations phase sep-
arated with crystallization of the A particles. Figure 2
shows a representative example of our results, giving the
positions of the particles after crystallization at T=0.40
(NVT-MD). There is a large region of pure A particles
showing clear crystalline order.

The general theory of stability by supercooling a mix-
ture shows that if a binary mixture can crystallize into
e.g. a AB-type crystal, the mixing energy can enhance
the tendency of crystallization, in CNT by decreasing the
size of the critical nucleus. We find that increasing the
fraction of B-particles to xB=0.5 results in that the KA-
mixture quickly crystallizes into an AB (CsCl structure)
crystal in accordance with the CNT prediction. The re-
sult is as mentioned consistent with the results of Fer-
nandez and Harrowell [7], who found that the T = 0
equilibrium phase of the KA consists of a coexisting A
(fcc) and AB (CsCl structure) crystals.

The stability of the supercooled mixture depends on
details in the cut-off of the potentials. Originally Kob
and Andersen used a cut-off at 2.5σα,β (α, β = A,B).
If one instead uses the same cut-off for all three pair
potentials, i.e. 2.5σAA, this corresponds to a shift from
2.5 σAB to 3.125 σAB. By this extension of the range
of the AB attraction the mixing energy becomes more
negative than in the original KA mixture by an amount of
0.04 ǫAA. This may seem insignificant, but according to
Eq. (11) the corresponding change in the critical nucleus
size is of order 10%. Consistent with this we find that
the KABLJ mixture with this cutoff must typically be
simulated three times longer before it crystallizes than
when using the original KA parameters.
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IV. A MODIFIED BINARY MODEL SYSTEM
LESS PRONE TO CRYSTALLIZATION

With the general theory for melting point depression
and nucleation in mind it is possible to modify the ex-
isting models in such a way that they are less prone to
crystallization. We want to maintain the success of the
existing models, which are set up to simulate real su-
percooled mixtures, in the case of KA-model a binary
mixture of Ni80P20 alloy. For this reason the sizes of the
molecules in the KA-mixture, given by the σii values, are
maintained. We also want to have the same structure of
the KA-mixture, given by their correlation functions. A
modified KA-mixture with only repulsive forces between
A-A and B-B particles, but where the attraction between
A- and B-particles is maintained. With Lennard-Jones
(LJ) potentials between particle i and j the modified po-
tentials are

uij(rij) =
{

uLJ(rij)− uLJ(rij(icut)), rij < rij(cut)
0, r ≥ rij(cut),(16)

with

ri,i(cut) = 21/6σii (17)
rAB(cut) = 2.5σAB (18)

and meets these requirements. A priory it is to be ex-
pected [13] that the structure of the mixture only de-
viates marginally from the originally KA-model because
the repulsive parts of the potential interactions are not
changed from the original KA-model. The modified bi-
nary model is indeed much more stable and we have so
far not been able to crystallize it (for a particle fraction
xB = 0.2). The system was cooled and at a new and
lower temperature the system was equilibrated until the
diffusion constant remained constant, and the system was
then simulated 1010 time steps (corresponding to ≈ 0.1
ms) for nine temperatures in the interval T ∈ [0.25, 0.40].
There are two reasons for this resistance against crystal-
lization by supercooling. First the melting point tem-
perature, T ∗fus,A, of the pure solvent particles is lowered

significantly (see Figure 1). Secondly, the relative impor-
tance of the mixing energy, ∆A,mixupot(xB) is bigger
due to a stronger violation of the LB-rules for the energy
and thereby a lower melting point temperature and an
increase of the size of the critical fcc-nucleus.
The question arises, however, whether the modified sys-
tem is a supercooled system or a highly viscous (equi-
librium) liquid. As mentioned most MD simulations are
performed at constant density, and the result shown in
Figure 1 for p = 10 cannot be used to obtain the melt-
ing point temperature in the modified system at ρ=1.2
and xB =0.2, and to determine whether the system is in
a supercooled state. The KA-mixture crystallizes into
a pure A-particle fcc-structure for small particle frac-
tion, xB, and into a CsCl (A,B) crystal for xB ≈ 0.5.

In between there might be other stable crystal arrange-
ments [14]. The relative strength of the binding energy
between A- and B particles is increased when the attrac-
tion between A,A- and B,B particles are removed, but
with unchanged attraction between A- and B particles.
This change stabilizes the CsCl-like crystal relative to the
liquid, and the melting point temperature at xB =0.5 is
increased, whereas the melting point temperature of the
fcc crystal for small xB is decreased (as shown in Figure
1). The qualitative change in melting point temperature
by the modification, and at constant pressure is shown
in Figure 3. There is, however, a simple computer ex-
periment to investigate whether the modified system at
ρ=1.2 and xB =0.2 is in a supercooled state at the low
temperature: First we crystallized the modified system
at a particle fraction xB=0.5. Then the system with
ρ=1.2 and xB =0.2 was grafted with a CsCl crystal of
200 A and 200 B-particles, taken from the xB=0.5 system
and surrounded by 600 A-particles at a density ρ = 1.2,
and the melting point temperature of this crystal was di-
rectly determined by heating/cooling. The melting point
temperature of the CsCl grafted system at xB =0.2 and
ρ=1.2 is Tm ≈ 0.32, and the modified system is indeed
a supercooled highly viscous liquid at the low temper-
atures investigated. For a temperature of T =0.30 and
below the system with the A,B crystal of 400 particles
remained; but the remaining A-particle crystallized into
a fcc-structure. The configuration is shown in Figure 4.
The computer experiment demonstrates that the super-
cooled system is below what corresponds to the eutectic
point temperature in a constant pressure system, but the
actual phase diagram might be even more complicated
than given here [14].
An further advantage of the modified system is that it
is much faster to simulate by using a two-step sorting of
nearest neighbor [12]. In addition to that one can use
a bigger value of the time increment in the MD simula-
tion due to the lower temperature, so not only does the
mixture not crystallizes; but it can also be cooled further
down under equilibrium condition (see Figures 8-10) and
followed for much longer times (0.1ms).

The structure of the modified mixture is, as expected,
almost the same as in the KA-mixture. Figure 5, 6 and
7 show the radial distribution functions, gα,β(r) for the
modified mixture and for the KA-mixture. The similar-
ity is well known. (The so-called WCA- system [13] with
only repulsive LJ forces has been used in perturbation
theories for dense liquid.) As can be seen from the fig-
ures only the distribution, gB,B(r) of the B-particles is
affected. This change in gB,B(r) is due to the relative in-
creased ”binding-energy” between the solvent A-particles
and the solute of B-particles which, however, is not so
visible in gA,B(r) due to the many A-B configurations
(notice the different y-scales of the two figures).

The KA- and the modified mixture were cooled down
from T=1.5. The KA- mixture crystallizes as mentioned
in the temperature interval T ∈ [0.39, 0.45]; but it is pos-
sible to quench the KA-system down to T=0.375 and
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still determine the self diffusion constant, D. The modi-
fied mixture was cooled down to T=0.25. At each (low)
temperature the system was followed 1010 ≈ one 0.1ms
time step. The diffusion constant, at T=0.25, for the A-
particles is D(A) ≈ 1.0× 10−08. The B particles behave
in a similar way, but as the temperature is decreased the
ratio D(B)/D(A) changes from 1.7 for T=1.5 to 9.7 for
T=0.25. The values of the self-diffusion constants D(T)
were obtained from the slopes of the mean square dis-
placements as a function of the time. At the low temper-
atures the ballistic- and diffusive time-regimes are very
well separated, a log-log plot of the mean-square displace-
ment as a function of time and for different temperatures
(Figure 8) shows this separation.

The diffusion constants for A- and B-particles are
shown in Figure 9 together with low temperature data
for the KA-mixture (A-particles) [15]. It is possible to
scale the diffusion constants for the two mixtures as is
demonstrated in Figure 10, where log(D) for the KA-
mixture (+) connected with dots, is plotted as a function
of 1/(T*0.81). A similar ”fragility invariance” for a sys-
tem with different repulsive power potentials (r−n) has
been observed of [16].

V. DISCUSSION

The highly viscous fluid state below the equilibrium
melting point temperature is found in many systems
ranging from simple organic one-component systems and
alloys to complex biochemical substances and ionic liq-
uids. Along with the increasing interest in this state of
matter it is important to have models that are less prone
to crystallisation. The general thermodynamics theory
for (equilibrium) melting and classical nucleation theory
gives an indication of how to create models which sup-
press crystallisation by cooling. We have given one simple
example by modifying the Kob-Andersen model which is

the most used MD model for binary highly viscous fluids,
but it is straightforward to extend the model to include
other interactions and a more refined energy functions
without loosing its stability against crystallization. A
general recipe of energy functions for stable highly vis-
cous liquids is, however, difficult to set up since many
mixtures exhibits ”reacting systems” with crystals with
mixed compositions where an increased binding-or mix-
ing energy can enhance crystallization of e.g. A,B crys-
tals. Both the Kob-Andersen and the Wahnström models
are examples of this phenomenon.

The modified model enhances the relative attraction
between unlike species by removing the attraction be-
tween the A,A- and B,B-interactions. Supercooled liq-
uid (WCA-) mixtures with solely repulsive LJ-potentials
have been reported before [17], [18], but we observe that
both systems [17], [18] phase separated and crystallized
by cooling. By maintaining the attraction between un-
like species the highly viscous state is stabilized. The
modified mixture disobeys the LB-energy rule even more
than the KA-mixture. The LB-energy rule is a geomet-
ric mean of interaction energy between two particles with
energy scaling parameters, ǫAA and ǫBB. The two mod-
els have the same energy scaling parameters, ǫαβ ; but
a much stronger violation of the energy rule in the in-
teraction interval rαβ ∈ [21/6σi,i,∞] where the WCA-
potentials are zero. The result of this ”cut and shift”
is that the B-particles are almost ”covalently” bounded
to the A-particles and the violation of the LB-rule for
the mixing energy gives a recipe for creating fragile and
stable supercooled liquid mixtures.
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Figure Captions
Figure 1.
Melting point temperature Tfus,A of the solvent of
A-particles at the external pressure p=10 as a function
of the particle fraction xB of solute particles, and in the
concentration interval xB ∈ [0, 0.2] where the system
crystallizes into a crystal of pure (fcc) A-particles. With
full line is Tfus,A(xB) for an ideal mixture and the
Wahnström-model [1] (no visible difference), with small
dashes is for the Kob-Andersen mixture [2], and with
long dashes is the present modified mixture (see Sec. IV).

Figure 2.
(a) Particle positions projected onto a plane for the stan-
dard Kob-Andersen binary Lennard-Jones liquid (the
large (A) particles are green, the small (B) particles are
black). The system is shown after 1.5 µs of simulation
(Argon units) at T=0.40 and density 1.2 (dimensionless
units). After this simulation time the A particles phase
separated and formed a large crystal, as is clear in the
second figure showing the same configuration with all A
particles removed.

Figure 3.
Schematic illustration of the change in melting point
temperature, Tm(xB) as a function of the particle
fraction, xB by removing the attraction between the
A,A- and B,B pair interactions.

Figure 4.
Particle positions of the frozen system after it first was
grafted with a small CsCl (A,B) crystal and at T = 0.30.
The A-particles are green and the B-particles are red.
(a) The hole system of 1000 particles at the density
ρ = 1.2 and xB = 0.20. (b) A central part of the frozen
system where the two coexisting crystal forms, fcc (A)
and CsCl (AB) clearly can be seen. (The frozen system
contains several defects).

Figure 5.
Radial distribution functions gAA(r) for the A-A
distribution particles at the density ρ=1.2 and the tem-
perature T=0.50 for a mixtures with particle fraction
xB=0.2 of B-particles. Full line is for a KA-mixture and
the dashed curve is for the modified mixture.

Figure 6.
Radial distribution functions gAB(r) for the A-B
distribution at the density ρ=1.2 and the temperature
T=0.50 for a mixtures with particle fraction xB=0.2 of
B-particles. Full line is for a KA-mixture and the dashed
curve is for the modified mixture.

Figure 7.
Radial distribution functions gBB(r) for the B-B dis-
tribution at the density ρ=1.2 and the temperature
T=0.50 for a mixtures with particle fraction xB=0.2 of
B-particles. Full line is for a KA-mixture and the dashed
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curve is for the modified mixture.

Figure 8.
log − log plot of the mean square displacement
for A-particles as a function of time (in unit
σ
√

m/ǫ ≈ 2. × 10−12s)and for different tempera-
tures (from the left): T=1.00, 0.40, 0.35, 0.325, 0.30,
0.275 and 0.25. respectively.

Figure 9.
An Arrhenius plot, logD(1/T), of the self diffusion
constant D. With + is D(A) for the KA mixture, and
the points given by × and connected with lines is
D(A) for the modified binary mixture (see III B). The
diffusion constants, D(B) for the smaller B-particles in
the modified binary mixture are shown with ⋆.

Figure 10.
With full line is the logD(1/T) for the modified mixture (
the data points from Fig.9 are just connected by straight
lines) and with dashes are the corresponding scaled KA-

data log(D)( 1
0.81T ), where the temperatures are scaled by

an empirical factor 0.81.
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Termiske fluktuationer – er der noget nyt under Solen?

Af Ulf Rørbæk Pedersen, Thomas B. Schrøder og Jeppe C. Dyre, Danmarks Grundforskningsfonds center for seje
væskers dynamik, “Glas og Tid”, Roskilde Universitet

I computersimuleringer af en række simple væsker har det for nyligt vist sig, at tryk og energi korrelerer meget
stærkt i deres fluktuationer i termisk ligevægt. Artiklen fortæller kort om denne opdagelse og dens konsekvenser.

Termiske fluktuationer og statistik
Tænk på molekylerne i et glas vand – eller på atomerne
i en klump kobber. Et sådant system er utroligt kom-
pliceret hvis man forestiller sig at skulle holde rede
på alle molekylernes positioner og bevægelser. Men
heldigvis er langt de fleste frihedsgrader uinteressante.
Interessante størrelser er fx den samlede energi, volu-
menet, trykket, temperaturen – eller det samlede elek-
triske dipolmoment. For et glas vand i termisk ligevægt
er disse størrelser ganske veldefinerede og konstante i
tiden. Men betragter man systemet “med mikroskopet,”
vil man se at størrelserne faktisk fluktuerer en smu-
le. Dette fænomen afhænger af randbetingelserne, fx
gælder for et isoleret system at energien er bevaret og
derfor ikke kan fluktuere. Men den typiske situation er
at makroskopiske størrelser, som tiden går, fluktuerer en
lille smule omkring deres middelværdier.

Situationen er ikke anderledes end uden for
fysikken, faktisk er statistik jo netop opfundet til
at kunne skelne tilfældige fluktuationer fra ikke-
tilfældige. En nyttig erkendelse fra statistikken er den
såkaldte 1/

√
N regel, en regel man kan komme for-

bavsende langt med. Hvis man fx slår plat og krone
10.000 gange vil der i gennemsnit komme 5.000 gange
plat og 5.000 gange krone. Men selvfølgelig vil disse
tal ikke passe helt præcist, og 1/

√
N reglen siger at den

typiske relative afvigelse i dette eksempel er omkring
1/100 af de 10.000, altså af størrelsesorden 100 til
hver side. Det betyder at hvis man fx observerer krone
6.000 gange, er det tale om en meget interessant mønt!
Men hvis man observerer krone 5.060 gange er der
ingen grund til mistænksomhed. Når man ofte læser
at en Gallup-undersøgelse har en usikkerhed på 3%
kommer det fra, at man typisk interviewer omkring
1.000 mennesker.

Einsteins formel for varmekapaciteten
1/
√

N reglen betyder at jo større N er, jo mindre
er fluktuationerne relativt. Jo større et glas vand, jo
mindre fluktuerer middelenergien. Man skulle derfor
mene at termiske fluktuationer ingen særlig betyd-
ning har for makroskopiske systemer. For godt 100 år
siden viste Einstein imidlertid at det er forkert. Han
udregnede, at varmekapaciteten ved konstant volumen
for et system i termisk ligevægt med omgivelserne er
proportional med systemets energifluktuationer. Kalder
vi energien for E og betegnes afvigelser fra ligevægt
med1E , defineres energifluktuationernes størrelse ved

√
< (1E)2 >, hvor de spidse parenteser signalerer

middelværdi over tid. Einstein viste ved en simpel
udregning, at denne størrelses kvadrat er proportional
med varmekapaciteten CV :

CV = < (1E)2 >
kB T 2

, (1)

hvor kB er Boltzmanns konstant og T er tempera-
turen. Varmekapaciteten er selvfølgelig proportional
med antallet af molekyler, så ifølge Einsteins formel er
energifluktuationernes størrelse proportional med

√
N .

Da energien går som N , betyder det at den relative ener-
gifluktuation varierer som 1/

√
N . I Einsteins formel for

varmekapaciteten genfinder vi altså statistikkens 1/
√

N
regel!

I løbet af 1920’erne og 1930’erne blev det grad-
vist klart at termiske fluktuationer også bestemmer
andre såkaldte lineær-respons størrelser. For eksempel
er kompressibiliteten (sammentrykkeligheden) propor-
tional med volumenfluktuationerne og dielektricitets-
konstanten er proportional med fluktuationerne af det
elektriske dipolmoment uden et ydre felt. Endnu mere
generelt gælder det såkaldte fluktuations-dissipations
(FD) teorem, der udtaler sig om det tidsafhængige re-
spons af et system der forstyrres lidt fra ligevægt, fx ved
at det påføres et ydre elektrisk eller magnetisk felt. FD-
teoremet afspejler den dybe erkendelse at fluktuationer
og lineært respons er to sider af samme sag; teoremet
gør det muligt at beregne det tids/frekvens-afhængige
respons på et ydre felt alene ud fra fluktuationerne
i termisk ligevægt (mere præcist: ud fra ligevægts
tidsautokorrelationsfunktioner). Dette resultat, som er
grundlæggende i den moderne statistiske mekanik, blev
endeligt etableret i løbet af 1950’erne og kendes for den
elektriske ledningsevnes vedkommende som “Kubo-
formlen”. Også på dette område var Einstein altså en
pioner.

Korrelation af virial og potentiel energi i væsker
På grund af FD-teoremet ved vi i dag at termiske
fluktuationer ikke er ligegyldig støj, men tværtimod
indeholder væsentlig information. De fleste fysikere
ville nok mene der ikke er mere at sige om denne
sag. Ved grundforskningscenteret “Glas og Tid” på
RUC studerer vi sejtflydende væskers egenskaber både
eksperimentelt og teoretisk, blandt andet med henblik
på at forstå glasovergangen – den proces hvor væsken
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gradvist størkner til et fast, ikke krystallinsk stof [1-5].
Vi udfører i den forbindelse omfattende computersimu-
leringer. Her opdagede vi for nyligt noget mærkeligt...
Det viste sig at at tryk- og energi-fluktuationerne næsten
helt følges ad i tiden for rigtig mange væsker [6].
Se fx på figur 1 som viser resultater fra en com-
putersimulering af den såkaldte Lennard-Jones væske
(der i øvrigt ikke er sejtflydende!). Lennard-Jones (LJ)
væsken har gennem mange år fungeret som standard
modelsystem for studiet af væsker – den danner bl.a.
grundlag for diverse numeriske protein-modeller – og
den er givetvis et af de mest simulerede systemer i
computerens tidlige historie. LJ-væsken består af en
række partikler som vekselvirker via par-kræfter med
en stærk, kortrækkende frastødning og en svagere,
mere langtrækkende tiltrækning. Den kortrækkende
frastødning modellerer molekyl-molekyl frastødningen,
som i sidste ende stammer fra Pauli-princippet for
elektronerne. LJ-systemet er imidlertid rent klassisk
og studeres ved “molecular dynamics” metoden som
simpelthen løser Newtons anden lov numerisk.

Figur 1. Normerede fluktuationer som funktioner af tiden af
virial, W , og potentiel energi, U , i computersimuleringer af
Lennard-Jones væsken (middelværdien er fratrukket og der
er divideret med spredningen). T =80 K og p=0. Vi anven-
der såkaldte “Argon units”, dvs. de parametre for Lennard-
Jones potentialet der bedst reproducerer termodynamiske
data for Argon. De viste data er et lille udsnit af en 10
nanosekunder lang simulering. W og U er tydeligvis stærkt
korrelerede. Dette er kvantificeret med korrelationskoef-
ficienten: R≡<1W1U>/

√
<(1W )2><(1U )2>. R=1

svarer til perfekt korrelation, medens R=0 svarer til ingen
korrelation overhovedet. Figuren er en dansk version af en
figur fra ref. [6].

Figur 1 viser faktisk ikke trykket p og energien
E – mere præcist er det det såkaldte virial W og
den potentielle energi U der vises. Som bekendt
er energien summen af den kinetiske og den po-
tentielle energi; sidstnævnte er den del af energien
som afhænger af molekylernes positioner. På samme
måde har trykket et “trivielt” bidrag fra molekylernes
bevægelse (deres impulser) og et bidrag som afspejler
det intermolekylære potential. Førstnævnte er der altid
– også når molekylerne ikke vekselvirker; det fører til
idealgasligningen (med sædvanlige betegnelser), pV =
NkB T . Virialet W giver så per definition resten af
trykket:

pV = NkB T +W. (2)

Bemærk at virialet har dimension energi. Når man plot-
ter virial og potentiel energi som funktioner af tiden for
LJ-væsken i termisk ligevægt (figur 1) finder man altså
at størrelserne følges pænt ad i deres normaliserede

fluktuationer. I det viste eksempel, der er typisk, er W
og U 94% korrelerede.

Figur 2. Illustration af de stærke W − U korrelationer i
computersimuleringer af Lennard-Jones væsken for forskel-
lige termodynamiske tilstande. Hver farvet ellipse består
af punkter der giver sammenhørende værdier af virial og
potentiel energi til givne tidspunkter i tidsudviklingen. De
ellipser der ligger på samme skrå sorte stiplede linie er
simuleret ved samme densitet. Densiteterne er fra højre mod
venstre: 32,6; 34,6; 36,0; 37,4 og 39,8 mol/l. De ellipser der
krydses af den næsten vandrette blå stiplede linie har nul
tryk. Det at de farvede ellipser er langstrækte viser, at der
er stærke korrelationer mellem virial og potentiel energi.
Den orange ellipse mærket “T =80 K” er resultatet af den
simulering der er illustreret i figur 1, med R = 0, 94. For
alle de termodynamiske tilstande der er vist her gælder
R > 0, 9, undtaget væske-tilstandene med negativt tryk
(under den blå stiplede linie) hvor R er lidt mindre end 0,9.
Figuren er en dansk version af en figur fra ref. [6].

Figur 2 viser samhørende værdier af W og U
for en række termodynamiske tilstande af LJ-væsken.
For hver tilstand (farvet klynge) vises øjeblikkelige
værdier; hver tilstand danner på denne måde en
langstrakt ellipse af punkter. Det at den er langstrakt
udtrykker netop de stærke korrelationer. De stiplede
linier markerer forskellige densiteter.

Ingen har tilsyneladende bemærket disse korrela-
tioner før – eller i hvert fald publiceret det. Vi havde
en del problemer med selv at få resultatet publiceret,
nogle reviewere mente det var forkert :-( , nogle at
det var trivielt :-( , men heldigvis var der også nogle
som mente det er interessant :-) . Et overrasken-
de forskningsresultat rejser altid følgende spørgsmål:
Hvad er forklaringen? Hvor alment er fænomenet?
Og: Er det overhovedet vigtigt, dvs har det afgørende
konsekvenser – og i givet fald hvilke? Hvad angår
det første, vil vi ikke her bruge så megen plads på
forklaringen (se reference [7]); det viser sig at for en
række væsker kan potentialet til en god approximation
beskrives som en invers potenslov af afstanden mellem
to molekyler. Dette betyder at disse væsker har stærke
W − U korrelationer – de er “strongly correlating”.
Dermed afgrænses en klasse af væsker som omfatter
van der Waals væsker og formentlig de fleste metaller,
mens væsker med stærke hydrogenbindinger og væsker
med kovalente bindinger ikke er “strongly correlating”.
Men som vist i detaljer i ref. [7] er forklaringen lidt
mere kompliceret end som så; fx er korrelationerne i
Lennard-Jones krystallen faktisk endnu stærkere end i
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væsken. Korrelationerne overlever altså krystallisering
(se nederste venstre hjørne i figur 2), hvilket er meget
usædvanligt for en første-ordens faseovergang.

Argon er stærkt korreleret
Der er en hel del der tyder på at “strongly correlating”
væsker i flere sammenhænge er simplere end væsker i
almindelighed. Vi er for tiden i “Glas og Tid”-gruppen
i fuld gang med at kortlægge fænomenet teoretisk.
Men hvilke eksperimentelle konsekvenser har stærke
W −U korrelationer? Noget af det første vi kiggede på
var argon, den klassiske modelvæske. Ved at analysere
allerede eksisterende eksperimentelle data har vi vist
at der er 96% korrelation mellem virial og potentiel
energi i deres termiske fluktuationer for superkritisk
argon. Dette er det første direkte bevis for at “strongly
correlating liquids” eksisterer i virkeligheden og ikke
kun i computeren. Figur 3 viser termodynamiske data
for argon i et plot hvor diagonalen svarer til 100%
korrelation.

Figur 3. Stærke W −U korrelationer i eksperimentelle data
for superkritisk Argon. Data for tre forskellige densiteter
og en række temperaturer er plottet på en sådan måde (se
reference 6) at de skulle falde på den sorte diagonal hvis
virial og potential energi var perfekt korreleret (R = 1).
Dette er ikke tilfældet, men vi finder R = 0, 96 (den røde
stiplede linie) – altså ganske stærke korrelationer. Figuren
er en dansk version af en figur fra ref. [6].

Mellem væske og fast stof
En måske vigtigere konsekvens vedrører sejtflydende
væsker, der er vores primære interesse i “Glas og Tid”.
En sådan væske er kendetegnet ved at have meget
lang relaxationstid [1-5] – den tid det tager væsken
at komme i ligevægt efter en ydre forstyrrelse. Mens
relaxationstiden for vand er 1 picosekund, kan den nemt
være millisekunder, sekunder, timer, osv, for ekstremt
seje væsker. Dette medfører, kan man vise, at en række
termodynamiske størrelser som fx varmekapacitet, ter-
miske udvidelseskoefficient eller kompressibilitet, alle
er komplekse og frekvens-afhængige (ligesom fx en
elektrisk impedans). Hvis væskens relaxationstid er
τ , vil disse “termoviskoelastiske responsfunktioner”
have signifikant frekvensafhængighed for frekvenser

omkring 1/τ . Dette kan kvalitativt forstås på følgende
måde. Når vi måler ved frekvenser der er væsentligt
højere end 1/τ , kan væskens struktur ikke nå at reagere
på den påvirkning den udsættes for, simpelthen fordi
dens relaxationstid er for lang. Det betyder at man
vil se en opførsel der er karakteristisk for et fast stof.
Måler vi derimod ved en frekvens der er væsentligt
lavere end 1/τ , har væsken god tid til at reagere på
den påvirkning vi udsætter den for, og den udviser
karakteristisk væske-opførsel. Det vil sige at størrelser
som varmekapacitet, kompressibilitet og udvidelsesko-
efficient er høje ved lave frekvenser (væske-opførsel)
og lave ved høje frekvenser (faststof-opførsel). Ved
frekvenser omkring 1/τ slår relaxationsprocesserne
igennem og medfører at responsfunktionerne bliver
komplekse.

Dette er helt generelt for alle de grundlæggende otte
termodynamiske responsfunktioner som findes (se fx
ref. [8]). Men for “strongly correlating liquids” kan man
vise [8], at i grænsen hvor der er 100% korrelation
mellem virial og potentiel energi, vil alle ovennævnte
responsfunktioner have samme frekvensafhængighed.
Faktisk gælder også omvendt, at hvis responsfunktio-
nerne har samme frekvensafhængighed, så vil væsken
være “strongly correlating”. Dette resultat illustrerer
den ny væskeklasses relevans for seje væskers fysik.
Men det er endnu ikke eftervist eksperimentelt. Grun-
den er, at der i dag ikke findes metoder til pålidelig
måling af termoviskoelastiske responsfunktioner. Vi
arbejder på at udvikle sådanne i “Glas og Tid”-gruppen.
Det vil føre for vidt at forklare hvorfor det er så svært at
måle responsfunktionerne; den interesserede læser kan
få noget af forklaringen i ref. [9] der påviser at gængse
metoder til måling af den frekvensafhængige isobare
varmekapacitet ikke er pålidelige.

Nervesignaler
Et sidste eksempel på betydningen af korrelatio-

ner involverer en biofysisk anvendelse. For nyligt
har Thomas Heimburg og Andrew Jackson fra Niels
Bohr Institutet fremsat en helt ny teori for hvordan
et nervesignal propagerer [10]. Idéen er at nerve-
signaler ikke primært er elektriske signaler, men u-
lineære (soliton-)lydbølger som forplanter sig i nerve-
cellemembranen. Teorien, som naturligvis er kontrover-
siel, forklarer bedøvelse som en effekt af at membran-
smeltetemperaturen sænkes, hvilket delvis forhindrer
lydbølgens forplantning [11].

Et vigtigt input i Heimburg-Jackson teorien er at
membran-varmekapacitet og -kompressibilitet er pro-
portionale i deres variation med temperaturen. Det kan
vises at dette er opfyldt til en god approximation hvis
membranens mikroskopiske energifluktuationer korre-
lerer stærkt med dens volumenfluktuationer (ved kon-
stant tryk), altså en korrelation af samme type som den
ovenfor diskuterede. Vi har undersøgt om det er til-
fældet ved, i samarbejde med Günther Peters fra MEM-
PHYS DTU, at foretage nogle omfattende computer-
simuleringer. Resultaterne ses i figur 4. Rent faktisk
finder vi stærke korrelationer, hvilket bestemt ikke er
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trivielt i lyset af hvor kompliceret en biomembran er.
Simuleringerne støtter altså Heimburg-Jackson teorien.

Figur 4. Øverst ses et udsnit af en computersimulereret
membran bestående af phospholipider. Et phospholipid
molekyle består af en hydrofil del (elsker vand) samt en
hydrofob del (hader vand). I vand vil lipiderne spontant
ordne sig så hydrofobe dele er skærmet fra vand mens
hydrofile grupper er i kontakt med vand, som det er ses
på figuren. Hovedbestandelen af disse biomembraner er
phospholipider, og de benyttes derfor ofte som model-
system for disse. Nederst vises hvordan volumen og energi
midlet over 1/2 nanosekund fluktuerer som funktion af tid
i en simulering af en membran. Med det blotte øje ses at
volumen og energi “følges ad”, dvs. de er stærkt korreleret.
Det kan nævnes at øjeblikkelige volumener og energier
kun er svagt korreleret. Det skyldes bl.a. at vandmolekyler
bidrager til korttids-fluktuationer og at vand ikke er en
“strongly correlating”-væske (se tekst). Det er altså kun
for de langsomme membranfluktuationer man finder stærk
korrelation.

Der forestår nu et større arbejde med at kortlægge
egenskaberne af “strongly correlating liquids”. Vores
arbejdshypotese er som nævnt at disse væsker er særligt
simple. Det er påvist at tryk-temperatur-afhængigheden
af relaxationstiden i det væsentlige kan beregnes ud fra
ligevægtsfluktuationerne [12], og seje væskers “aging”
egenskaber er også ret simple (upubliceret).

Den lidt tilfældige opdagelse af stærke W − U
korrelationer, kan således måske med tiden føre til en
bedre forståelse af seje væskers fysik.
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Hidden scale invariance in molecular van der Waals liquids: A simulation study
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We demonstrate that there is a ”hidden” approximate scale invariance in van der Waals liquids.
For an asymmetric dumbbell model, we provide direct evidence that the potential energy fluctuations
are accurately described by inverse power law (IPL) potentials. We show that the radial distribution
functions are accurately reproduced by the IPL’s, and that the radial distribution functions obey
the IPL predicted scaling properties. IPL scaling of the long time dynamics is also found to apply
to this liquid – as well as to the Lewis-Wahnström model of ortho-terphenyl – with the scaling
exponent predicted by the equilibrium fluctuations.

A phenomenon is scale invariant if it has no charac-
teristic length or time. Scale invariance emerged as a
paradigm in the early 1970’s following the tremendous
successes of the theory of critical phenomena. Liquids
described by scale-invariant potentials are a theorist’s
dream by having a number of simple properties [1]. If
potentials vary with distance as r−n, the configurational
free energy F as a function of density ρ ≡ N/V and tem-
perature T may be written F = NkBTf(ργ/T ) where
γ = n/3. Dynamical properties of inverse power law
(IPL) liquids are also simple, because their relaxation
time τ may be written as

τ = g(ργ/T ) (1)

with the exponent γ that characterizes the thermody-
namics. Unfortunately the predicted equation of state
does not fit data for real fluids, and IPL liquids do not
have stable low pressure states. Both problems derive
from the absence of molecular attractions; these define
the spatial scale of one intermolecular distance at low
pressure. Thus real liquids have apparently little in com-
mon with scale-invariant liquids. In this paper we demon-
strate that there is nevertheless a “hidden” approximate
scale invariance in a large class of liquids, the van der
Waals liquids. Consequently several properties of IPL
liquids apply to van der Waals liquids, leading to exper-
imentally testable predictions.

It was recently shown [2, 3, 4] that a number of model
liquids exhibit strong correlations between the equilib-
rium fluctuations of the potential energy U and the virial
W (defining the contribution to pressure coming from
the intermolecular interactions via pV = NkBT + W ).
The class of “strongly correlating liquids” includes [4]
the standard Lennard-Jones liquid, a liquid with expo-
nential short-range repulsion, the Kob-Andersen binary
Lennard-Jones liquid, a seven-site united-atom model of
toluene, the three-site Lewis-Wahnström toy model of
ortho-terphenyl (OTP), as well as a model consisting of
asymmetric “dumbbell” type molecules.

For inverse power-law potentials ∝ r−n there is 100%
correlation between virial and potential energy fluctu-
ations as function of time: ∆W (t) = γ∆U(t) where

γ = n/3 [1]. By reference to the single-component
Lennard-Jones system it was argued in Ref. [4] that
strongly correlating liquids are well approximated by in-
verse power-law potentials as regards their thermal equi-
librium fluctuations. The present paper presents concrete
proofs that this is the case – even for molecular model liq-
uids with van der Waals type interactions (i.e., excluding
hydrogen- and covalent bonds). The main conclusions
below are:

• At a given density and temperature the energy sur-
face of a strongly correlating molecular liquid may
to a good approximation be replaced by that of in-
verse power law potentials.

• State points having similar γ’s are connected by a
number of IPL scaling properties to a good approx-
imation.

For an asymmetric dumbbell model we provide direct evi-
dence below that the potential energy fluctuations are ac-
curately described by inverse power law potentials (vary-
ing as r−18). We show that the radial distributions func-
tions are all accurately reproduced by the r−18 IPL’s, and
that the radial distribution functions obey the IPL pre-
dicted scaling properties. Proceeding to the dynamics we
show that that the so-called “density scaling” (Eq. (1))
applies to this liquid – as well as to the Lewis-Wahnström
OTP model – with scaling exponent γ predicted by the
equilibrium fluctuations.

We performed NVT molecular dynamics simulations
[5, 6, 7, 8] of two molecular liquids: i) 512 asymmet-
ric dumbbell molecules consisting of pairs of Lennard-
Jones (LJ) spheres connected by rigid bonds; the dumb-
bells were parameterized to mimic toluene [9]. ii) the
Lewis-Wahnström OTP model [12]. Both models are
strongly correlating for the range of state points investi-
gated here. For the dumbbell model we find for the cor-
relation coefficient 0.95 < R < 0.97; for the OTP model
0.91 < R < 0.92. Fig. 1a illustrates the strong WU-
correlation for the asymmetric dumbbell model. Since
R ≈ 1 it follows that ∆W (t) ≈ γ∆U(t) in their instan-
taneous fluctuations [3], and consequently we refer to γ

Paper XIII 199



2

-0.5 0 0.5
∆U(t)/N   [kJ/mol]

-4

-2

0

2

4

∆W
(t

)/
N

   
[k

J/
m

ol
]

-0.5 0 0.5
∆U

BB
(t)/N   [kJ/mol]

-0.5

0

0.5

∆U
IP

L
,B

B
(t

)/
N

, ∆
U

D
if

f,
B

B
(t

)/
N

   
[k

J/
m

ol
]

∆U
IPL,BB

(t)/N
R

LJ,IPL
 = 0.977

Var
PL

 = Var
LJ

∆U
Diff,BB

(t)/N
R

LJ,Diff
 = 0.104

Var
Diff

 = 0.045Var
LJ

a)

b)

ρ = 1.166g/cm
3

T = 320K
R = 0.959
Slope = 5.90

FIG. 1: a) ∆W (t)/N vs. ∆U(t)/N for the
asymmetric dumbbell model. The strong correla-
tions are quantified by the correlation coefficient,

R ≡ 〈∆W∆U〉 /
√
〈(∆W )2〉 〈(∆U)2〉 = 0.959. The dashed

line has the slope γ ≡
√
〈(∆W )2〉 / 〈(∆U)2〉 = 5.90. b)

For configurations taken from the simulation reported in
Fig. 1a we evaluated UIPL,BB(t) ≡ ∑

i>j
φIPL,BB(rij(t))

with φIPL,BB(r) ≡ CBBǫBB(σBB/r)18. The constant
CBB = 1.489 (CAA = 1.075, CAB = 1.237) was chosen to
make the variance of UIPL,BB(t) equal to the variance of
UBB(t) ≡ ∑

i>j
φLJ,BB(rij(t)). UIPL,BB(t) strongly correlates

with UBB(t) with a correlation coefficient of 0.977. In
comparison UDiff,BB(t) ≡ UBB(t) − UIPL,BB(t) has small
variance, 0.045 times the variance of UBB(t) and is only
weakly correlated with the latter. Redoing the analysis with
n = 3×5.90 (the IPL exponent suggested by the fluctuations,
see Fig. 1a) gives almost identical results.

as the ’slope’.
Fig. 1b details the origin of the strong correlations,

focusing on the strongest interaction in the dumbbell
model, the ’BB’ interaction (’B’ indicating the large
“phenyl” spheres). The fluctuations in UBB(t) are well
described by an IPL pair potential φIPL,BB(r) ∝ r−18.
The same conclusion applies for the AA and AB inter-
actions (data not shown). The reason that φDiff,αβ(r) ≡
φLJ,αβ(r) − φIPL,αβ(r) contributes little to the fluctua-
tions at constant volume is that this term is approx-
imately linear in the region of the first peak of the
pair correlation function [4]: When one pair-distance is
increased, other pair-distance(s) are decreased by (ap-
proximately) the same amount, keeping the change in
UDiff,αβ(t) ≡ ∑

i>j φDiff,αβ(rij(t)) small. Switching the
ensemble from NVT to NpT (p=1.32GPa) reduces the
WU-correlation from 0.959 to 0.866, illustrating the im-
portance of the constant volume constraint.

The fluctuations tell us that the relevant part of the
potential energy surface is well approximated by a corre-
sponding ’IPL’ system, i.e., the system where the LJ pair
potentials are replaced by the IPL potentials discussed in
Fig. 1b. To test how far this correspondence holds, we
simulated the IPL system at the same density and tem-
perature. Fig. 2a compares the pair distribution func-
tions; the agreement is striking. This is the first proof
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FIG. 2: a) Radial distribution function for the asymmetric
dumbbell model (full lines), and the corresponding IPL model
(dashed lines, see text). b) Scaled gBB(r) for three state
points; the two state points with the same Γ = ργ/T (black
full line and red long dashed line; γ = 6) have almost identical
(scaled) structure. There is a small but significant difference
in the left part of the first peak, reflecting the existence of the
fixed bond. Similar scaling is found also for the AA and AB
interactions (data not shown).

that the structure of a molecular liquid is well reproduced
by an IPL liquid. In contrast, the average pressures of
the two models are different, because the IPL system does
not include the contributions from φDiff,αβ(r).

Consider now changing density and temperature, con-
serving the parameter Γ = ργ/T . For an n = 3γ IPL
liquid this means that we are studying the same system
but with scaled length and time units [1]. Fig. 2b shows
that the real (LJ) system inherits this scaling behavior
to a good approximation. Note that there is only a small
effect of the fixed bond connecting the LJ spheres. The
average pressure and potential energy do not follow the
IPL scaling; φDiff,αβ(r) contributes differently to these at
different state points, thus the IPL describes the struc-
ture and dynamics (see below), not the equation of state.

We now turn to the long time dynamics. To the degree
that the IPL approximation holds over a range of state-
points, the long time dynamics is a function of Γ = ργ/T
where γ is one third of the IPL exponent n, i.e., the
“density” scaling of Eq. (1) is predicted to apply. This
type of scaling has in recent years become a well estab-
lished empirical fact for a large number of viscous liquids
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FIG. 3: The ’slopes’, γ ≡
√
〈(∆W )2〉 / 〈(∆U)2〉 plotted as a

function of temperature for two molecular models. Both mod-
els are strongly correlating. For the Lewis-Wahnström OTP
model the zero pressure isobar covers densities in the interval
1.008 g/cm3 to 1.089 g/cm3. For the asymmetric dumbbell
model the 2.0GPa isobar covers densities in the interval 1.120
g/cm3 to 1.217 g/cm3. For the three dumbbell isochores the
pressures at the lowest temperatures are -0.02GPa, 0.67GPa,
and 1.28GPa respectively.

[13, 14]. Other forms of scaling have been suggested, but
it has been argued that the scaling reflects an underlying
IPL [14, 15, 16, 17], and thus that Eq. (1) is the correct
scaling.

A potential complication for the IPL explanation of
density scaling, is that the IPL exponent suggested by the
fluctuations (n = 3γ) depends on state point [4]. This
is illustrated for the two models in Fig. 3. Note that
while the suggested exponent is slightly dependent on
state point for each model, the fluctuations clearly point
towards different exponents for the two models. For the
OTP model we test density scaling with the slope aver-
aged over all state points: γ = 7.9. For the dumbbell
model we consider two values of the scaling exponent:
the slope averaged over all state points; γ = 6.1, and the
slope averaged over the three data sets with the smallest
slopes; γ = 5.9, i.e., the “best” compromise if we ignore
the ρ = 1.006 g/cm3 isochore. Following Coslovich and
Roland [16] we apply density scaling to the reduced dif-
fusion coefficient, D∗ ≡ (N/V )1/3(kBT/m)−1/2D where
m is the mass of the molecules and D is the diffusion
coefficient estimated from the long-time behavior of the
mean-square displacement.

Fig. 4 applies density scaling to the Lewis-Wahnström
OTP model. Density scaling works neither with γ = 9.0
or γ = 7.0, whereas it does work well with γ = 7.9 - the
exponent we chose from the fluctuations (Fig. 3).

In Fig. 5 density scaling is applied to the asymmetric
dumbbell model. Density scaling works neither with γ =
7.0 or γ = 5.0. Comparing the scaling with γ = 6.1 to
the data without scaling (γ = 0, open symbols), we find
good data collapse; by far most of the density dependence
is captured by the density scaling with γ = 6.1. With
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FIG. 4: The reduced diffusion coefficient for Lewis-
Wahnström OTP [12]. Open symbols: D∗ plotted without
scaling (γ = 0, D∗ divided by 100). Filled symbols: D∗

scaled according to Eq. (1) with three different scaling expo-
nents: γ = 9.0 (Upper set of curves, D∗ multiplied by 10),
γ = 7.9 (Second set of curves), γ = 7.0 (Third set of curves,
D∗ divided by 10).

γ = 5.9 the data collapse is even better for three of the
data sets, whereas one data set deviates from the master
curve comprised of these three sets. This is the isochore
ρ = 1.006 g/cm3, i.e., the one that was ignored when
choosing γ = 5.9 (Fig. 3).

The above results demonstrate that density scaling is a
consequence of the underlying IPL scale invariance. The
scaling is only perfect for true IPL liquids - for “real“ liq-
uids a larger region of state points makes the scaling less
perfect (compare Fig. 5, γ = 6.1 and 5.9) for two reasons:
the apparent IPL exponents (n = 3γ) change more, and
the effect of intra-molecular interactions that do not obey
the IPL scaling (here the fixed bonds) is larger. Note that
even small density changes are experimentally relevant;
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FIG. 5: The reduced diffusion coefficient for the asymmetric
dumbbell model. Open symbols: D∗ plotted without scal-
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according to Eq. (1) with four different scaling exponents:
γ = 7.0 (Upper set of curves, D∗ multiplied by 100), γ = 6.1
(Second set of curves, D∗ multiplied by 10), γ = 5.9 (Third
set of curves), and γ = 5.0 (Fourth set of curves, D∗ divided
by 10).

changing density of, e.g., phenylphthalein-dimethylether
by 2% can change the relaxation time by more than two
decades [18].

We have provided direct evidence for an underlying
IPL scale invariance in model molecular van der Waals
liquids, leading to two experimentally testable predic-
tions for these liquids: i) The density scaling exponent
γ can be identified from the equilibrium fluctuations
via the fluctuation-dissipation theorem determining the
frequency-dependent linear thermoviscoelastic response
functions [2, 19]; ii) Different state points with same ργ/T
– same values of D∗ and τα – should have same scaled

structure factors.
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